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1 Introduction14

The goal of this lecture is to derive the first law of black hole mechanics. This is a very15

important equation in black hole thermodynamics as it resembles almost exactly the first16

law of thermodynamics. The first law of thermodynamics is written17

dU = d̄Q+ d̄W (1.1)

where U is the internal energy, Q is heat flow, W is work done on the system. d̄ represents18

an inexact differential1. This can be written as19

dU = TdS + pdV (1.2)

plus any other work terms that may be relevant.20

Our first law of black hole mechanics is going to look like this:21

dM =
1

8π
κdA+ΩHdJH (1.3)

where M is the mass of a black hole, κ is the surface gravity, A is the area of the event22

horizon, ΩH is the angular velocity and JH is the angular momentum. Note that throughout23

this lecture I assume black holes are uncharged. All the results we derive can be extended24

to charged black holes.25

The first law of black hole mechanics is obviously formally analogous to the first law26

of black hole thermodynamics, but it is also somewhat physically analogous. The internal27

energy of a black hole really is just its mass, and the rotational energy of a black hole is a28

measure of the work it can do (as I discuss more in lecture 6). Of course, the analogy breaks29

down for the entropy term as a classical black hole has zero temperature. It isn’t until the30

1I.e. a differential that is path dependent.
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discovery of Hawking radiation that the area term can also be interpreted as physically31

analogous to entropy term. But we are getting ahead of ourselves. Our job today is to32

derive the first law of black hole mechanics.33

We will do this in four parts. First, in order to have quantities like the mass, area of34

angular momentum of a black hole, we need to integrate over spacetime regions. Therefore,35

our first job is to learn how to do integration on manifolds. Once we can integrate, we36

have to find quantities that can describe the mass and angular momentum of a black hole.37

These will be the Komar integrals, and describe this quantities for stationary black holes.38

Once we have defined M and JH , we can derive the integral form of the first law of39

black hole mechanics. This is a relationship between the absolute quantity of the mass,40

angular momentum and area of a black hole.41

Finally, we derive a differential form of the first law, which describes the relationship42

between infinitesimal changes in these quantities.43

2 Integration in General Relativity44

Let M be a differentiable manifold. A p-form on M is an anti-symmetric (0, p)-tensor on45

M .46

The exterior derivative of a p-form, α, is defined as47

[dα]a1...ap+1 = (p+ 1)∇[a1αa2...ap+1] (2.1)

A manifold of dimension n is orientable if it admits an orientation: a smooth, no-48

where vanishing n − form, ϵa1...an . Two orientations are equivalent is ϵ′ = fϵ where f is49

an everywhere positive function. A orientation is right handed in a given coordinate chart50

if it is everywhere positive, and left handed if it is negative.51

Note: Any n-form X is related to ϵ by X = hϵ for some function h. X will define an52

orientation provided h does not vanish, hence an orientable manifold admits precisely two53

inequivalent orientations.54

On an oriented manifold with a metric, the volume form is defined by55

ϵ12...n =
√

|g| (2.2)

and the contraction of two volume forms for a n-dimensional Lorentzian spacetime is given56

by57

ϵa1...ajaj+1...anϵa1...ajbj+1...bn = −(n− j)!j!δ
[aj+1

bj+1
. . . δ

an]
bn
, (2.3)

Let M be an oriented manifold of dimension n. Let ψ : O → U be a right handed58

coordinate chart, {xµ} and let X be a n-form. The integral of X over O is59 ∫
O
X ≡

∫
U
dx1...dxnX12...n (2.4)

which is chart independent. To extend this over M , we simply sum over the integration of60

all charts in an atlas, weighted by a partition of unity.61
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The volume of M , and the integral of a function f on M , are given respectively by62

∫
M

ϵ,

∫
M
fϵ (2.5)

A manifold with boundary is defined in the same way as a manifold except that charts63

map to open subsets of 1
2R

n = {(x1...xn) ∈ Rn|x1 ≥ 0}. This is just a technical way of way64

some dimension of the manifold is cut off at a boundary and has the natural interpretation.65

Stokes’ theorem in general relativity:66

Theorem 2.1. Stokes’ Theorem67

Let M be an n-dimensional compact oriented manifold with boundary and let α be an68

(n-1)-form on M which is C1. Then69 ∫
M
dα =

∫
Ṁ

α (2.6)

where the dot denotes boundary, and d is the exterior derivative.70

3 Komar Integrals71

Now that we can integrate, we want an expression for the mass energy of a black hole72

spacetime (or any spacetime for that matter).73

In general relativity, the stress-energy tensor Tab represents the energy properties of74

matter. Using this the local energy properties relative to any observer will be well-defined.75

∇aTab = 0 represents local energy conservation, as it is defined at every point, but it76

does not in general lead to a global conservation law. However, if the spacetime admits a77

timelike Killing vector field then we do have a global conservation law in the usual form:78

Lemma 3.1. If a spacelike admits a timelike Killing vector field ξa, then for any two79

spacelike hypersurfaces Σ, Σ′ which bound a region R, the total energy of matter on Σ is80

equal to the total energy of matter on Σ′ where the total energy of matter is given by81

E(Σ) = −
∫
Σ
ϵa1a2a3bT

b
c ξ

c (3.1)

I.e. E is a conserved quantity.82

Proof.

∇a(Tabξ
b) = (∇aTab)ξ

b + Tab∇aξb = 0 (3.2)

Define83

E(Σ) = −
∫
Σ
ϵa1a2a3bT

b
c ξ

c (3.3)

where ϵa1a2a3b is the volume form on the spacetime.84

Now let Σ and Σ′ bound a spacetime region R, as in figure 1. By Stokes’ theorem85
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Figure 1. Kerr Black Hole Conformal Diagram

E(Σ′)− E(Σ) = −
∫
Ṙ
ϵa1a2a3bT

b
c ξ

c (3.4)

= −4

∫
R
∇[dϵa1a2a3]bT

b
c ξ

c (3.5)

= −4

∫
R
ϵ[a1a2a3|b∇|d]T

b
c ξ

c (3.6)

Any n-form must be proportional to ϵ. So86

ϵ[a1a2a3|b∇|d]T
b
c ξ

c = hϵa1a2a3d (3.7)

contracting the LHS and the RHS with ϵa1a2a3d gives87

∇bT
b
c ξ

c = h (3.8)

where we have used 2.3.88

The LHS of (3.7) is zero, and so the RHS is also zero. Thus,89

E(Σ′)− E(Σ) = 0 (3.9)

90

Unfortunately, this quantity E(Σ) is no use. At no point have we used the Einstein91

equation. Tab therefore cannot be describing the total energy of the spacetime in any92

useful sense as it cannot be capturing the energy possessed by, for example, a black hole93

in a vacuum spacetime. Indeed, Tab need not be the tensor that appears on the RHS of94

Einstein’s equation for the above derivation to be valid. We are clearly missing something.95

Unfortunately again, there is no meaningful notion of the energy density of the gravita-96

tional field in general relativity, so we cannot state a local conservation law for gravitational97

energy and follow the same procedure as above. But fortunately, there does exists a useful98

notion of the total energy of an isolated system, where by isolated we mean it can be99

modelled as asymptotically flat.100

The main desiderata of any adequate account of mass is that if a spacetime contains101

mass M , a particle at r >> M should behave as if acted on by a Newtonian mass M .102

What we are going to do is model the force required to keep a shell of unit mass density103
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stationary around the region of spacetime that contains all the gravitational energy. We104

will find this expression has the same form as the Newtonian expression for a shell around105

a mass M . Therefore we equate the expressions, and thus get an expression for the mass.106

Before modelling this, let’s prove a lemma that we will need:107

Lemma 3.2.

∇[a(ϵbc]de∇dξe) =
2

3
Re

dξ
dϵeabc (3.10)

Proof.

ϵabcd∇b(ϵcdef∇eξf ) = ϵabcdϵcdef∇b∇eξf

= −4∇b∇[aξb]

= 4∇b∇bξa

(3.11)

(where the second line uses (2.3) and the third line uses the Killing property.)108

Using the definition the Killing property and the Ricci identity ∇a∇bw
c +∇b∇aw

c =109

Rc
dabw

d, where wa is any vector field, one can prove110

∇a∇bξc = −Rd
bcaξd (3.12)

which implies111

∇a∇aξb = −Rc
bξc (3.13)

thus (3.11) gives112

ϵabcd∇b(ϵcdef∇eξf ) = −4Ra
b ξ

b (3.14)

Contracting both sides with ϵalmn gives113

∇[a(ϵbc]de∇dξe) =
2

3
Re

dξ
dϵeabc (3.15)

as required.114

Now, let us model our stationary shell of mass surrounding the region full of energy.115

Consider a static, asymptotically flat spacetime that is vacuum near infinity. Normalise116

the Killing vector field ξa so that |ξ| = (−ξaξa)1/2 → 1 at infinity. The four-velocity of a117

particle following an orbit of ξa (i.e. stationary) is va = ξa/|ξ|, and the four-acceleration is118

ab = va∇av
b (3.16)

which is the local force that must be exerted to hold a unit mass in place. The force that119

must be exerted at infinity is red-shifted by a factor |ξ| to give ãb = va∇aξ
b. Thus, suppose120

we have a shell S of unit surface mass density in the Cauchy surface orthogonal to va. Then121

the force required to keep this shell on a stationary orbit is just the integral of ãb normal122

to S over the surface S.123
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F =

∫
S
nbva∇aξbϵcd (3.17)

where na is the unit vector normal to S, and ϵcd is the volume element on S.124

By Killing’s equation we can throw away the symmetric part of nbva, leaving v[anb].125

Now Nab = 2v[anb] is the unit tensor normal to S. Thus −6N[abϵcd] = ϵabcd, the volume126

form on the entire spacetime. Substituting this in127

F = −1

2

∫
S
ϵabcd∇cξd (3.18)

Now we need to show this is independent of S. Let S be entirely in the vacuum region,128

so Rab = 0. Then by our lemma 3.1, ∇[a(ϵbc]de∇dξe) = 0. Applying Stokes’ theorem to129

any volume V bounded by two surfaces S and S′ in the vacuum region, one gets130 ∫
V
∇[a(ϵbc]de∇dξe) =

∫
S
ϵbcde∇dξe −

∫
S′
ϵbcde∇dξe = 0 (3.19)

And so our force F is independent of S.131

In Newtonian gravity the force required to hold a shell of unit mass density in place is132

also independent of the shape of the shell and is given by 4πM . We therefore equate this133

force in general relativity and write134

M =
−1

8π

∫
S
ϵabcd∇cξd (3.20)

This is called the Komar mass, and is the mass of all stationary asymptotically flat135

spacetimes that are vacuum near infinity. This is obviously conserved, and it is clearly very136

closely associated with the time translation symmetry; a nice feature of a definition of mass137

indeed. We also have used Einstein’s equation in this derivation, making sure therefore it138

is fundamentally general relativistic.139

I state without proof that one can also write the angular momentum of an axisymmetric140

spacetime as141

J =
1

16π

∫
S
ϵabcd∇cψd (3.21)

where ψa is the spacelike Killing vector field which generates a 1-parameter group of isome-142

tries isomorphic to U(1). J here is the angular momentum of the spacetime, and both J143

and M are equal to their notational equivalents in the Kerr spacetime.144

The Komar mass is only for stationary spacetimes. For non-stationary spacetimes,145

we use the ADM mass. For this we restrict attention to those spacetimes that admit a 3146

+ 1 decomposition, which allows us to write down a Hamiltonian formulation of general147

relativity. One finds that the Hamiltonian takes the form H = H0 + H ′ where H0 = 0148

for any solution satisfying the constraint equations, and H ′ a surface term. Therefore,149

EADM = H ′, which takes the form of an integral over the boundary of a 3-slice.150

Armed with well defined notions of mass, let’s derive the integral form of the first law151

of black hole mechanics.152
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Figure 2. Kerr Black Hole Conformal Diagram

4 Integral Form153

Consider a Kerr Black Hole, the unique solution for an uncharged, spherically symmetric154

spacetime. The conformal diagram for such a black hole is given by figure 2. However, we155

believe that physical black holes form from the collapse of stellar matter. Modelling this156

matter as uncharged, we replace most of our conformal diagram with this matter, which157

gives us a new diagram depicted in figure 3. The final mass and angular momentum of the158

black hole is determined by the mass and angular momentum of the collapsed matter.159

Now, consider a Cauchy surface that intersects the horizon after the matter has all160

crossed the horizon. Such a Cauchy surface, call it Σ, is displayed in figure 3. Let H be161

the event horizon, and let H be the 2-surface H ∩ Σ. Thus, H is a boundary to Σ.162

We know that the Kerr black hole admits a timelike killing vector field ξa, and az-163

imuthal killing vector field, ψa, and another killing vector field that is tangent to the164

generators of the event horizon on the horizon165
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Figure 3. Kerr Black Hole Conformal Diagram

χa = ξa +ΩHψ
a (4.1)

where ΩH is interpreted as the angular velocity of the black hole.2 These will be used to166

calculate the mass and angular momentum of our black hole.167

From the previous section, the Komar integral for the total mass of a stationary,168

asymptotically flat spacetime is given by169

M =
−1

8π

∫
S
ϵabcd∇cξd (4.2)

where S is a two sphere at infinity.170

We want an expression for the M in terms of state variables. To get this, we apply171

Stokes’ theorem to our expression for the Komar mass.172

M =
−1

8π

∫
S
ϵabcd∇cξd

=
−1

8π

∫
Σ
d(ϵabcd∇cξd)

(4.3)

2This interpretation comes from modelling the angular velocity dϕ/dt of an observer who’s angular

velocity comes entirely from the rotation of the spacetime. As such an observer approaches the event

horizon of a rotating black hole, the angular velocity becomes ΩH . See [1] chapter 12.3 for details.

– 8 –



We can split this integral into two parts; one over the interior of the black hole to H,173

and the other from H to infinity. Call these portions Σint and Σext respectively. For the174

integral over Σint we can use Stokes’ theorem again to turn the integral over the interior175

of the black hole into an integral on H.176

M =
−1

8π

∫
Σext

d(ϵabcd∇cξd)− 1

8π

∫
H
ϵabcd∇cξd (4.4)

Regarding the first term177

−1

8π

∫
Σext

d(ϵabcd∇cξd)

=
−3

8π

∫
Σext

∇[a(ϵbc]de∇dξe)

=
−1

4π

∫
Σext

Re
dξ

dϵeabc

= −2

∫
Σext

(T e
d − 1

2
Tδed)ξ

dϵeabc

(4.5)

where in the third line we have used (3.10), and the in the fourth line we have used178

Einstein’s equation.179

For the second term, we use equation (4.1) so that180

1

8π

∫
H
ϵabcd∇cξd

=
1

8π

∫
H
ϵabcd∇cχd − ΩH

1

8π

∫
H
ϵabcd∇cψd

=
1

8π

∫
H
ϵabcd∇cχd − 2ΩHJH

(4.6)

where we have used the (3.21), the Komar integral for the angular momentum JH of the181

black hole.182

To evaluate the first term in the last line of (4.6), note that the volume element ϵab183

on H is given by ϵab = ϵabcdn
cχd where na is tangent to the future directed null normal to184

H, normalised to naχa = −1. Thus185

ϵabϵabcd∇cχd = ϵabefneχfϵabcd∇cχd = −4ncχd∇cχd = −4κ (4.7)

where for the second equality we have used again (2.3), and for the third we have used the186

definition of surface gravity, χb∇aχb = −κχa. Therefore, we can write187 ∫
H
ϵabcd∇cχd =

1

2

∫
H
(ϵefϵefcd∇cχd)ϵab = −2κA (4.8)

Hence,188
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Theorem 4.1. First Law of Black Hole Mechanics for an Uncharged Black Hole (Integral189

Form)190

M = 2

∫
Σext

(T e
d − 1

2
Tδed)ξ

dϵeabc +
1

4π
κA+ 2ΩHJH (4.9)

The first term can be viewed as a contribution from the matter in the region exterior191

to the black hole, and the second and third terms can be viewed as the contribution by the192

black hole. Therefore, we can write down a vacuum version of the first law in integral form193

Corollary 4.1.1. First Law of Black Hole Mechanics in Vacua for an Uncharged Black194

Hole (Integral Form)195

M =
1

4π
κA+ 2ΩHJH (4.10)

This is a useful expression but holds little philosophical interest. It is just an equation196

of state for the black hole. Indeed, the first law of thermodynamics is only well stated in197

its differential form; there is no good notion of the absolute amount of work possessed by198

any thermodynamic system. Therefore, if we want to draw an analogy between black hole199

mechanics and thermodynamics, we need to write the above first law in a differential form.200

I will describe two ways to this result.201

5 Differential Form202

5.1 Energy Balance203

To calculate how the variables change with respect to each other, we need to consider204

two spacetimes and calculate the different Komar integrals in each. Thus we consider two205

spacetimes (M, g) and (M, g + δg). We define206

hab = δgab = −gacgbdδgcd (5.1)

as the perturbation metric. Consider this to be a tensor field in the spacetime (M, g). Now207

define the vector208

va = ∇b(h
ab − gabh) (5.2)

where h = haa.209

Note that ∇av
a = 0 is the trace of the perturbed Einstein equation (−1

2∇a∇ch −210

1
2∇

b∇bhac + ∇b∇(cha)b = 0), and so is true by Einstein’s equation (see chapter 7 in [1]).211

We also have ∇aξ
a = 0 by Killing’s equation. Also note that for a stationary perturbation,212

Lξv
a = 0.3 The Lie derivative of a vector field Y a with respect to Xa is equal to the213

commutator of these vector fields, [X,Y ]a. Thus, [ξ, v]a = 0.214

Given these properties we have215

3As a reminder, the Lie derivative LXT is found by comparing the tensor T at a point p to the push

forward of T by the diffeomorphism that maps points to points a parameter distance t along the integral

curves of X, where X is a vector field, in the limit as t → 0.
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Lemma 5.1.

[d(ϵbcdev
dξe)]a = 0 (5.3)

Proof.

∇a(v
[aξb]) =

1

2
(va∇a(ξ

b)− ξa∇a(v
b)) = 0 (5.4)

where for the first equality we have used ∇aξ
a = ∇av

a = 0, and for the second we have216

used [ξ, v]a = 0.217

Therefore,218

[d(ϵbcdev
dξe)]a = 3∇[a(ϵbc]dev

dξe) = 0 (5.5)

where the second equality follows from (5.4).219

220

Therefore, by Stokes’ theorem, if we take Σ to be some three-dimensional volume221

bounded by two two-spheres, Σ̇1 and Σ̇2, we find222 ∫
Σ
d(ϵbcdev

dξe) = 0 =

∫
Σ̇1

ϵbcdev
dξe −

∫
Σ̇2

ϵbcdev
dξe (5.6)

Now let Σ̇1 = S, the two sphere at infinity, and Σ̇2 = H, the intersection of the horizon223

with a Cauchy surface, we get,224 ∫
S
ϵbcdeξ

e∇f (h
fd − gfdh) =

∫
H
ϵbcdeξ

e∇f (h
fd − gfdh) (5.7)

It is proven by Bardeen, Carter and Hawking (1973) in [2] that the LHS is equal to225

8πdM , and that the RHS is equal to −2Adκ− 16πJHdΩH , thus226

dM =
1

8π
(−2Adκ− 16πJHdΩH) (5.8)

Returning to equation (4.10), we vary this to get227

dM =
1

4π
(Adκ+ κdA) + 2(JHdΩH +ΩdJH) (5.9)

and we add equations 5.8 and 5.9 together to get228

Theorem 5.2. First Law of Black Hole Mechanics for an Uncharged Black Hole (Differ-229

ential Form)230

dM =
1

8π
κdA+ΩdJH (5.10)

In reality, we have modelled the the variation between two spacetimes, (M, g) and231

(M, g+ δg), where the δg represents a slight increase in the mass of the black hole, and we232

track the changes to the angular momentum and area on the horizon. This approach can233

be generalized to non-stationary perturbations, non-vacuum spacetimes and also to include234

a electric potential term for charged black holes. We now turn to another approach.235
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5.2 Partial Derivative Method236

This method relies on another result: the so-called ‘no-hair theorem’. The heuristic state-237

ment of the theorem is that a black-hole is completely described by three parameters, its238

mass M , its charge Q and its angular momentum J . However, the ‘no-hair theorem’ is a239

misnomer, because there are in fact many theorems that contribute to the impression that240

black holes are completely described by these three parameters, and none of these theorems241

proves exactly what is stated in the heuristic version. I will therefore call this the ‘no-hair242

conjecture’.243

Consider as an example a foundational theorem which contributes to the no-hair con-244

jecture is the following:245

Theorem 5.3. Kerr Uniqueness 1 [3] [4]246

If (M, g) is a stationary, axisymmetric, asymptotically flat vacuum spacetime suitably247

regular on, and outside, a connected event horizon then (M, g) is a member of the 2-248

parameter Kerr [5] family of solutions. The parameters are mass m and angular momentum249

J , and |J | < M .250

The limitation of theorems such as this is clear; it only applies to vacuum spacetimes,251

and thus clearly do not guarantee the conjecture holds for astrophysical black holes. Results252

such as these [6] have been generalised somewhat [7], but still a completely general proof253

of the conjecture is not available.4 Despite this, support for the conjecture is very strong,254

and for this derivation we will assume the conjecture is true.255

Given the conjecture, we can write256

A|Q=0 = A(M,J) (5.11)

Going forwards, I will suppress the Q = 0 subscript, keeping the uncharged assumption257

implicit. Assuming that this function is C1 in both variables, we can then write258

dA(M,J) =
∂A

∂M

∣∣∣∣
J

dM +
∂A

∂J

∣∣∣∣
M

dJ (5.12)

We can’t use expression (4.10) to compute these partial derivatives as this is also a259

function of κ and ΩH . Instead, we use results from the analysis of the Kerr metric. In260

Boyer-Lindquist coordinates, (t, r, θ, ϕ), the Kerr metric takes the form261

ds2 = −∆− a2 sin2(θ)

Σ
dt2 − 2a sin2(θ)

r2 + a2 −∆

Σ
dtdϕ

+

(
(r2 + a2)2 −∆a2 sin2(θ))

Σ

)
sin2 θdϕ2 +

Σ

∆
dr2 +Σdθ2

(5.13)

where a = JH/M262

4Indeed, Haco et al [8] have argued that black holes have ‘soft-hair’, but these results are beyond the

scope of the current discussion.
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Σ = r2 + a2 cos2 θ (5.14)

∆ = r2 − 2Mr + a2 (5.15)

There is a coordinate singularity at ∆ = 0, which when solved gives r± = M ±263 √
M2 − a2. These correspond to the inner and outer horizons, which have interesting264

properties we will not study here. We will only be concerned with the outer horizon, which265

is the radius at which null geodesics cannot escape. We want to know the area of H,266

defined by r+. The induced metric on H for a Cauchy surface such that dt = 0 will be267

h = gθθdθ
2 + gϕϕdϕ

2. The volume form on this orientable two-surface is then ϵθϕ =
√

|h|.268

Hence we can calculate the area of H.269

A =

∫
r=r+

√
gθθgϕϕdθdϕ

=

∫
r=r+

(r2+ + a2)sinθdθdϕ

= 4π(r2+ + a2)

= 4π(M2 + 2M
√
M2 − a2 +M2 − a2 + a2)

= 8π(M2 +M
√
M2 − a2)

(5.16)

I claim without proof that, from the definitions of κ and ΩH , for the Kerr metric270

κ =

√
M2 − a2

2M2 + 2M
√
M2 − a2

(5.17)

ΩH =
a

2M2 + 2M
√
M2 − a2

(5.18)

Therefore, computing our partial derivatives gives271

∂A

∂M

∣∣∣∣
J

=
8π

κ
(5.19)

and272

∂A

∂J

∣∣∣∣
M

=
−8πΩH

κ
(5.20)

Thus we recover theorem 5.2, the first law of black hole mechanics in differential form.273

Acknowledgements274

Wald’s General Relativity textbook [1], Harvey Reall’s Cambridge Part III General Rela-275

tivity and Black Hole lecture notes and Bardeen, Carter and Hawking (1973) [2] were the276

primary resources used to develop these lecture notes. Any mistakes are my own.277

– 13 –



References278

[1] R. Wald, General Relativity, Chicago University Press (1984).279

[2] J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics,280

Communications in mathematical physics 31 (1973) 161.281

[3] B. Carter, Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett. 26282

(1971) 331.283

[4] D.C. Robinson, Uniqueness of the kerr black hole, Phys. Rev. Lett. 34 (1975) 905.284

[5] R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special285

metrics, Phys. Rev. Lett. 11 (1963) 237.286

[6] M. Heusler, Black Hole Uniqueness Theorems, Cambridge Lecture Notes in Physics,287

Cambridge University Press (1996), 10.1017/CBO9780511661396.288

[7] N. Gürlebeck, No-hair theorem for black holes in astrophysical environments, Phys. Rev. Lett.289

114 (2015) 151102.290

[8] S. Haco, S.W. Hawking, M.J. Perry and A. Strominger, Black hole entropy and soft hair,291

Journal of High Energy Physics 2018 (2018) .292

– 14 –

https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1017/CBO9780511661396
https://doi.org/10.1103/PhysRevLett.114.151102
https://doi.org/10.1103/PhysRevLett.114.151102
https://doi.org/10.1103/PhysRevLett.114.151102
https://doi.org/10.1007/jhep12(2018)098

	Introduction
	Integration in General Relativity
	Komar Integrals
	Integral Form
	Differential Form
	Energy Balance
	Partial Derivative Method


