
Níckolas de Aguiar Alves�

Quantum Field Theory in Curved
Spacetime
An Introduction

Draft as of: October 3, 2023
São Bernardo do Campo – São Paulo

2023

https://orcid.org/0000-0002-0309-735X


AGUIAR ALVES, Níckolas de
Quantum Field Theory in Curved Spacetime: An Introduction / Níckolas de Aguiar

Alves — São Bernardo do Campo, 2023.
x, 40 p.: 12 il.
1. quantum field theory in curved spacetime. 2. algebraic quantum field theory. 3.

path integrals. 4. particle detectors. 5. Unruh effect. I. Title.



“Have you guessed the riddle yet?” the Hatter said, turning to Alice
again.
“No, I give it up,” Alice replied. “What’s the answer?”
“I haven’t the slightest idea,” said the Hatter.
“Nor I,” said the March Hare.

A piece of a conversation between Alice, the Mad Hatter and the
March Hare, in Lewis Carroll’s Alice’s Adventures in Wonderland.





Abstract

This is an introduction to quantum field theory in curved spacetimes written for the minicourse presented at the
Golden Wedding of Black Holes and Thermodynamics: An Online Celebration. It includes discussions about
the algebraic approach, the Fock space approach, the path integral approach, and particle detectors suitable for
someone with previous exposure to non-relativistic quantum mechanics and special relativity. Knowledge of
general relativity and quantum field theory in flat spacetime is recommended, but not mandatory. The content
follows closely, and sometimes overlaps with, the author’s master’s thesis, [1].

Keywords: quantum field theory in curved spacetime, algebraic quantum field theory, path integrals, particle
detectors, Unruh effect.
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Abbreviations

CCR canonical commutation relations

GNS Gelfand–Naimark–Segal

GR general relativity

KMS Kubo–Martin–Schwinger

LHS left-hand side

QFT quantum field theory

QFTCS quantum field theory in curved spacetime

RHS right-hand side

SM standard model

UV ultraviolet
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One

Why Do Things Fall?
We begin by discussing why quantum field theory in curved spacetime is an interesting subject and what
are its relevancy and limitations. In addition, we clearly specify the general problems we want to solve with
QFTCS. This is a preparation so that the following chapters can answer these questions.

1.1 Silly Big Questions

Some questions in physics are so deep and profound that they could be asked by a toddler. One could call
them “silly big questions”. Some examples are “how did the universe begin?”, “what are things made of?”,
“can we go back in time?”, “what is time?” and, of course, “why do things fall?”.

Some of these questions have been asked at least since the ancient Greeks [46]. Aristotle, for example,
believed all things were made of water, earth, fire, air, and aether. The motion of everything, including gravity,
was explained in terms of these five elements and their natural properties. While simple, such an explanation
is surprisingly good and was the apex of human science for nearly two millennia. Nevertheless, the theory did
have flaws and has been updated over the last few centuries. A modern-day physicist would answer those two
questions in the following manners. Everything is made from the quantum fields described by the standard
model (SM) [47, 62, 64]; and things fall because spacetime is curved according to the Einstein equations of
general relativity (GR) [28, 59].

The modern description does lack an interesting feature of the Aristotelian theory, though. While
Aristotle’s theory has a unified description of what things are made of and why they fall, modern theories can
barely fit together in a clear manner. More specifically, GR—our best description of how things fall—is a
theory written with classical matter in mind. Nevertheless, the SM—the best description of what things are
made of—is a quantum theory, which describes matter in a manner that is not the same considered in GR.
Hence, it is necessary to make at least some conceptual modifications to the theories to make them fit together.
Notice this is not the more complicated problem of quantum gravity, which aims at understanding how one
can get a fully quantum theory of gravitational phenomena. Instead, the point is merely that GR is a classical
theory, and hence to consider quantum matter one must somehow modify it.

GR can be roughly understood according to a famous phrase due to John A. Wheeler [65]: spacetime tells
matter how to move and matter tells spacetime how to curve (see Fig. 1.1). In order to consider the presence
of quantized matter, we will update this description to also allow spacetime to tell quantum fields how to
evolve, but we will make a simplifying compromise of not letting the quantum fields affect spacetime. While
this would be necessary for a more detailed analysis, we will ignore it to keep our model simple. The resulting
framework is then known as quantum field theory in curved spacetime (QFTCS), as pictured in Fig. 1.2.

In which regimes is this an interesting description? Whenever the classical spacetime curvature is already
so large that we can treat the quantum fields as being “very light”, i.e., such that they do not affect the curvature
very much. This can be assumed to be true in contexts in which the field’s state is assumed to be “not too
energetic”, in these sense that its energy-momentum tensor can be assumed to have a small expectation
value and small fluctuations. This is the case, for example, in particle physics, when one assumes the fields
themselves do not curve spacetime strongly enough to spoil the approximation of a flat spacetime. Similarly,
we will work in conditions in which the fields to not spoil the background spacetime, with the difference that
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2 1. Why Do Things Fall?

𝐺𝑎𝑏 = 8𝜋𝑇𝑎𝑏
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Figure 1.1: Illustration of how GR works. On the left-hand side one has the Einstein tensor 𝐺
𝑎𝑏

, which is a geometrical
quantity describing the curvature of spacetime. On the right-hand side one has the stress-energy-momentum
tensor 𝑇

𝑎𝑏
, which models the matter content on spacetime. This expression, the Einstein field equations, is

the main equation behind GR and describes how matter and spacetime influence each other.

𝐺𝑎𝑏 = 8𝜋𝑇𝑎𝑏 + 8𝜋
〈
𝑇𝑎𝑏

〉sp
ace

tim
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quantum fields how to move

Figure 1.2: Illustration of how QFTCS works. On the right-hand side, in addition to the classical stress-energy-momentum
tensor, we now also have a quantum stress tensor representing the quantum matter on spacetime. Within
QFTCS, we allow the spacetime geometry to dictate the dynamics of these quantum fields, but make the
simplifying assumption that they do not impact the background geometry in a significant way. While this is,
of course, a simplification, it still allows us to obtain interesting results.

we shall consider more general backgrounds and frames of reference. For example, QFTCS is generous in
accelerated reference frames and near black holes, which shall be our main interests throughout this text.

One should point out, however, that while Einstein said “subtle is the Lord, but malicious he is not”,
generous are the Einstein equations, but malicious too they are. Many interesting solutions to the EFEs are
interesting, but present unusual causal relations. For example, they might exhibit time-travel or faster-than-light
travel features [48], or completely miss a physical interpretation [28, Sec. 5.8]. Hence, we should begin by
restricting our attention to a certain class of spacetimes of interest.

1.2 Spacetimes of Interest

To keep our domain of interest limited to physically relevant spacetimes, we shall demand some good causal
properties of the classical background. For example, we demand the classical theory we want to quantize to
already be well-defined. We do this by requiring the existence of a structure known as a Cauchy surface.
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Definition 1.1 [Cauchy Surface]:
Let (𝑀, 𝑔

𝑎𝑏
) be a spacetime. We say Σ ⊆ 𝑀 is a Cauchy surface if, and only if, Σ is such that

i. Σ is topologically closed;

ii. all inextendible timelike curves intersect Σ exactly once;

iii. all inextendible causal curves intersect Σ at least once. ♠

This definition is equivalent to the one given in [59], where more details can be found.
The interest in a Cauchy surface lies on the fact that it ensures the whole spacetime can be characterized by

a single hypersurface. All events in the spacetime are affected by or affect the Cauchy surface. Furthermore,
given an event 𝑝 to the future of the Cauchy surface, the everything to the past of 𝑝 eventually crossed the
Cauchy surface (and similarly for events at the past of the hypersurface). Hence, giving complete information
about a classical field on the Cauchy surface allows one to obtain complete information about the field on the
entire spacetime. This is put in precise mathematical form, for example, in the review [21].

The existence of a Cauchy surface is not guaranteed to all spacetimes. Anti-De Sitter (AdS) spacetime, for
example, does not have a Cauchy surface. Neither do any spacetimes with closed timelike curves (which thus
allow time-travel). Our focus will be on those spacetimes which do possess a Cauchy surface. These are said
to be globally hyperbolic.

Definition 1.2 [Globally Hyperbolic Spacetimes]:
We say a spacetime is globally hyperbolic if, and only if, it possesses a Cauchy surface. ♠
Within these spacetimes, we are ensured to be able to solve, for example, the Klein–Gordon equation [21],

(∇𝑎∇𝑎 − 𝑚2)𝜑 = 𝑗 , (1.2.1)

where ∇𝑎 is the Levi-Civita connection associated with the metric 𝑔
𝑎𝑏

, and 𝑗 is an arbitrary source.
Let us then quantize the Klein–Gordon equation. To do so, however, we shall wonder what is a quantum

theory.

1.3 What is a Quantum Theory?

To begin answering what a quantum theory is, we shall first focus on what a general physical theory is, or
should be. To do so, we shall follow [1, 3] and references therein.

Consider any physical experiment. In order to be able to predict its outcomes, it is reasonable to expect
that the results are somehow ruled by an underlying probability distribution. Given an apparatus prepared in
some specific manner 𝐴, a physical system prepared in some specific manner 𝜔, and some arbitrary result 𝑞,
we expect that there is a probability 𝑝(𝑞 |𝜔, 𝐴) such that

𝑝(𝑞 |𝜔, 𝐴) = lim
𝑁→∞

𝑁𝑞

𝑁
, (1.3.1)

where 𝑁 is the amount of times the experiment has been realized under the same conditions (𝐴 and 𝜔) and 𝑁𝑞

is the amount of times the result turned out to be 𝑞. If this structure is not possible, one can hardly imagine
how to predict the outcomes of this experiment, and hence we are no longer dealing with a physics experiment.

Quite often, it is possible that using different apparatuses or slightly different preparations of the same
apparatus will lead to the same probabilistic outcomes. If it happens that

𝑝(𝑞 |𝜔, 𝐴1) = 𝑝(𝑞 |𝜔, 𝐴2) (1.3.2)

for all 𝑞’s and for all 𝜔’s, we shall say that 𝐴1 and 𝐴2 correspond to the same observable. The collection of
all observables is denoted by A.
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Similarly, it is possible that two different copies of a system or two different preparations of the same
system lead to the same results for any observable. Namely,

𝑝(𝑞 |𝜔1, 𝐴) = 𝑝(𝑞 |𝜔2, 𝐴), (1.3.3)

for all 𝑞 and for all 𝐴 ∈ A. In this case, we say 𝜔1 and 𝜔2 correspond to the same state.
The outcomes 𝑞 can in principle be anything. They are usually an image in a digital display or a position

in some sort of analogue ruler attached to the apparatus (such as the marks on an ammeter). In any case, it is
convenient to map these results to the real line, so it is easier to mathematically manipulate them. From here
onward, we will assume the outcomes of physical experiments are always expressed as real numbers, so that
𝑞 ∈ R.

This allows us to build the notion of a function of an observable. Let 𝑓 : R→ R and 𝐴 ∈ A. Then we
define 𝑓 (𝐴) to be the observable that yields 𝑓 (𝑞) whenever 𝐴 would yield 𝑞. This allows us, for example, to
define 𝐴𝑛 as the observable that yields 𝑞𝑛 whenever 𝐴 would yield 𝑞.

Using this, we can write simply the moments of the probability distribution 𝑝(𝑞 |𝜔, 𝐴). Namely, we define

𝜔(𝐴) =
∫

𝑞𝑝(𝑞 |𝜔, 𝐴) d𝑞 , (1.3.4)

and notice that
𝜔(𝐴𝑛) =

∫
𝑞𝑛𝑝(𝑞 |𝜔, 𝐴) d𝑞 . (1.3.5)

With this information, we can reconstruct the information about the probability distribution we actually are
trying to describe. Performing this reconstruction is known as the Hausdorff moment problem [49]. A simpler
route is to pick the function

𝜒𝑟 (𝑞) ≡
{

1, if 𝑞 = 𝑟,

0, otherwise,
(1.3.6)

and notice that 𝑝(𝑟 |𝜔, 𝐴) = 𝜔(𝜒𝑟 (𝐴)). Therefore, knowing 𝑝(𝑞 |𝜔, 𝐴) or knowing 𝜔(𝐴) are just two different
“coordinate systems” for knowing the state 𝜔.

We shall now focus on figuring out what sorts of structures A and the space of states on it have. We shall
see they actually admit algebraic structures. One could say the study of physics is the study of an algebra of
observables and of the space of states defined upon it, so that is what we are going to do.

Algebra of Observables

Still following [1, 3], let us not see how and why A has an algebraic structure.
We can always add elements of A. Given 𝐴 and 𝐵, we define 𝐴 + 𝐵 as the observable that yields

𝜔(𝐴 + 𝐵) = 𝜔(𝐴) + 𝜔(𝐵), (1.3.7)

for all states 𝜔. To define _𝐴 for a real number _ ∈ R we can simply consider the function 𝑓 : R→ R such
that 𝑓 (𝑞) = _𝑞 and define _𝐴 = 𝑓 (𝐴). Through this manner, one can show A is a real vector space.

Since we know how to compute functions of an observable, we can compute the square of an observable
𝐴2. With this construction, A gains a natural product

𝐴 ◦ 𝐵 =
1
2
[(𝐴 + 𝐵)2 − 𝐴2 − 𝐵2] . (1.3.8)

This is known as the Jordan product. In practice, it is more convenient to assume the existence of an associative
product · : A ×A → A such that

𝐴 ◦ 𝐵 =
1
2
[𝐴 · 𝐵 + 𝐵 · 𝐴] . (1.3.9)
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This associative product does not need to be commutative, although ◦ is. [1, 2, 50] give justification for why it
is more interesting to work with · than with ◦. We shall take this associative product for granted.

We can still further enlarge the algebra A by allowing it to assume complex values. In this case, we should
require that physical observables are “real”, in some sense. Hence, we assume A to possess a ∗ operation
such that

(𝐴∗)∗ = 𝐴 and (𝐴 · 𝐵)∗ = 𝐵∗ · 𝐴∗, (1.3.10)

mimicking the Hermitian conjugate of matrices. Physical observables are then Hermitian observables,
which satisfy 𝐴∗ = 𝐴. Multiplication by a complex scalar can be defined in similarity with how we defined
multiplication by a real scalar.

At last, we require the algebra to have the unit observable, 1. This is the observable 1 = 𝑓 (𝐴) for
𝑓 (𝑞) = 1,∀ 𝑞 ∈ R.

We thus find that it is reasonable to assume A has the following structure:

i. it is a complex vector space;

ii. it has a bilinear product · : A ×A → A;

iii. · is associative;

iv. there is an involution ∗ : A → A such that (𝐴 · 𝐵)∗ = 𝐵∗ · 𝐴∗ and (𝐴∗)∗ = 𝐴.

This is the structure of a ∗-algebra. For simplicity, we overlooked the topological details of the construction—
see [2, 3, 52] for those details that lead to a 𝐶∗-algebra—but it is possible to deal with the algebra of
observables at this level, as done in [32]. We shall follow this simpler route.

One can show that all of these algebras can be realized as algebras of operators acting on some Hilbert
space—see [7, 32]. However, commutative 𝐶∗ algebras are equivalent to algebras of functions on some
phase space (see [7]). Since classical theories live on a phase space, a theory is classical if, and only if, its
algebra of observables is commutative. Meanwhile, a theory is a quantum theory if, and only if, its algebra of
observables is not commutative.

Our goal is then to obtain a somehow natural, non-commutative algebra of observables for a Klein–Gordon
field. This is the goal of the next chapter.

However, something is missing: a characterization of what is a state. Within our construction, a state
becomes merely a normalized (𝜔(1) = 1), linear functional on A. One can check this naturally arises from
our previous characterization in experimental terms.

1.4 Reading Recommendations

Some common references on quantum field theory in curved spacetime are the books by Birrell and Davies
[5], Fulling [18], Mukhanov and Winitzki [38], Parker and Toms [41], and Wald [61]. Most of them should
discuss globally hyperbolic spacetimes, which are also discussed in the books by Hawking and Ellis [28] and
Wald [59]. The algebraic approach is well motivated in the books by Alfsen and Shultz [2], Araki [3], and
Strocchi [52].

g 0 G





Two

Algebraic Approach to Free Quantum Fields in
Curved Spacetime

We begin by discussing some more causal structure properties in order to quantize the free Klein–Gordon
field. This is done by means of the algebraic approach and we also explore some interesting states, such as
vacua and thermal states. We conclude by describing the Unruh effect in Minkowski spacetime and different
vacua in Schwarzschild spacetime.

2.1 Algebra of Observables

In order to proceed, it is useful to define a notion of lightcone for general spacetimes. This is encoded in the
causal past and future of a set.

Causal Structure and Green Functions

Definition 2.1:
Let (𝑀, 𝑔

𝑎𝑏
) be a spacetime. Let 𝑆 ⊆ 𝑀 . We define the causal future of 𝑆 as the set 𝐽+ (𝑆) defined by

𝐽+ (𝑆) = {𝑝 ∈ 𝑀; there is a future directed timelike curve _(𝑡) with _(0) ∈ 𝑆 and _(1) = 𝑝}. (2.1.1)

Similarly one defines the causal past of 𝑆, 𝐽− (𝑆). ♠
Due to the good properties of a globally hyperbolic spacetime, it is possible to find interesting Green

functions. These are functions (distributions, really) 𝐺 such that

(∇𝑎∇𝑎 − 𝑚2)𝐺 (𝑥, 𝑥′) = 1
√−𝑔 𝛿

(4) (𝑥, 𝑥′). (2.1.2)

Notice that the function
𝐺 𝑗 (𝑥) =

∫
𝐺 (𝑥, 𝑥′) 𝑗 (𝑥′)√−𝑔 d4𝑥′ (2.1.3)

is such that
(∇𝑎∇𝑎 − 𝑚2)𝐺 𝑗 (𝑥) = 𝑗 (𝑥), (2.1.4)

where 𝐺 𝑗 has some boundary conditions that depend on the particular choice of 𝐺. This is also common
in Electrodynamics, for example [58]. Hence, obtaining a Green function with some specific boundary
conditions is sufficient to solve the Klein–Gordon equation under those boundary conditions with any source.

Two interesting Green functions are known as the advanced and the retarded Green functions. These are
defined by the following boundary conditions:

• the advanced Green function 𝐺− is defined by the property that∗ supp𝐺− 𝑗 ⊆ 𝐽− (supp 𝑗);

∗supp 𝑓 denotes the support of 𝑓 , i.e., the set of all points 𝑥 at which 𝑓 (𝑥 ) ≠ 0.

7



8 2. Algebraic Approach to Free Quantum Fields in Curved Spacetime

supp 𝑗

supp𝐺+ 𝑗

supp𝐺− 𝑗

Figure 2.1: Causal diagrams illustrating the good causal behavior of solutions to the Klein–Gordon equation. The
diagrams are drawn such that null geodesics are always at 45◦. The supports of the advanced and retarded
Green functions 𝐺− and 𝐺+ are shown.

• the retarded Green function 𝐺+ is defined by the property that supp𝐺+ 𝑗 ⊆ 𝐽+ (supp 𝑗).

Hence, the advanced Green function propagates into the causal past of the source, while the retarded
Green function propagates into the future of the source. This is pictured on Fig. 2.1.

In any globally hyperbolic spacetime, the existence of 𝐺± is ensured [21]. We can use them to define the
commutator function

𝐸 = 𝐺+ − 𝐺− . (2.1.5)

This function has the property that, on the spacetime manifold 𝑀 = R × Σ (something always possible to
write in the presence of a Cauchy surface Σ), it holds that [13] (see also [23])

𝜕𝑡𝐸 (𝑡, ®𝒙; 𝑡′, ®𝒙′)
����
𝑡=𝑡 ′

= −𝛿 (3)
(
®𝒙, ®𝒙′

)
and 𝐸 (𝑡, ®𝒙; 𝑡′, ®𝒙′)

����
𝑡=𝑡 ′

= 0, (2.1.6)

the second equation being merely a statement that the commutator function vanishes on spacelike related
events. We can then impose commutation relations by choosing[

𝜑(𝑡, ®𝒙), 𝜑(𝑡, ®𝒙′)
]
= 0, (2.1.7)[

𝜕𝑡𝜑(𝑡, ®𝒙), 𝜕𝑡𝜑(𝑡, ®𝒙′)
]
= 0, (2.1.8)[

𝜑(𝑡, ®𝒙), 𝜕𝑡𝜑(𝑡, ®𝒙′)
]
= 𝑖𝛿 (3)

(
®𝒙, ®𝒙′

)
1, (2.1.9)

which are the usual equal-time commutation relations [14]. In a covariant notation, we can then write

[𝜑(𝑥), 𝜑(𝑥′)] = 𝑖𝐸 (𝑥, 𝑥′)1. (2.1.10)

One should notice that 𝐸 (𝑥, 𝑥′) vanishes if 𝑥 and 𝑥′ are spacelike related due to the support properties of
the propagators, and hence Eq. 2.1.10 implements Einstein causality: operators on spacelike related regions
commute.

In practice, 𝐸 is actually a distribution. Indeed, in Minkowski spacetime translation invariance implies
𝐸 (𝑥, 𝑥′) = 𝐸 (𝑥 − 𝑥′) and one has [6]

𝐸 (𝑥) = − 1
2𝜋

sign(𝑥0)𝛿
(
−𝑥`𝑥`

)
+

sign(𝑥0)Θ
(
−𝑥`𝑥`

)
𝐽1

(
𝑚

√︁
−𝑥`𝑥`

)
4𝜋

√︁
−𝑥`𝑥`

, (2.1.11)

where sign is the sign function, Θ is the Heaviside step function, 𝐽1 is the Bessel function and 𝑥`𝑥` stands for
the invariant interval.

To avoid the mathematical difficulties of distributions, we shall do as usual with them and smear them
against test functions 𝑓 ∈ C∞

0 (𝑀), which are the smooth functions of compact support. Hence, we write, for
example,

𝜑( 𝑓 ) =
∫

𝜑(𝑥) 𝑓 (𝑥)√−𝑔 d4𝑥 . (2.1.12)
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We thus get
[𝜑( 𝑓1), 𝜑( 𝑓2)] = 𝑖𝐸 ( 𝑓1, 𝑓2)1, (2.1.13)

where
𝐸 ( 𝑓1, 𝑓2) =

∫
𝐸 (𝑥, 𝑥′) 𝑓1 (𝑥) 𝑓2 (𝑥′)

√︁
−𝑔(𝑥) d4𝑥

√︁
−𝑔(𝑥′) d4𝑥′ . (2.1.14)

Algebra for the real Klein–Gordon field

It seems natural to build the algebra of observables out of the objects 𝜑( 𝑓 ) and their products. Hence, that is
the path we are going to take. Since we have already imposed Eq. 2.1.13, we should start from there. This
approach is similar to the one taken in [29].

The definition of 𝜑( 𝑓 ) as a smearing of 𝜑 with 𝑓 leads us to impose

𝜑( 𝑓1) + _𝜑( 𝑓2) = 𝜑( 𝑓1 + _ 𝑓2), (2.1.15)

for any 𝑓1, 𝑓2 ∈ C∞
0 (𝑀) and any _ ∈ C.

Furthermore, we want the quantum field to somehow solve the Klein–Gordon equation. Notice then that

0 =

∫
(∇𝑎∇𝑎 − 𝑚2)𝜑(𝑥) 𝑓 (𝑥)√−𝑔 d4𝑥 , (2.1.16a)

=

∫
𝜑(𝑥) (∇𝑎∇𝑎 − 𝑚2) 𝑓 (𝑥)√−𝑔 d4𝑥 , (2.1.16b)

= 𝜑((∇𝑎∇𝑎 − 𝑚2) 𝑓 ), (2.1.16c)

which is thus another condition we impose on the algebra.
Finally, we also notice that

𝜑( 𝑓 )∗ =
∫

𝜑(𝑥) 𝑓 (𝑥)√−𝑔 d4𝑥 , (2.1.17a)

=

∫
𝜑(𝑥) 𝑓 (𝑥)√−𝑔 d4𝑥 , (2.1.17b)

= 𝜑( 𝑓 ), (2.1.17c)

which imposes that 𝜑 is a real field.
Notice that similar constructions could be performed for complex fields or higher spin fields. Nevertheless,

our focus in these notes will remain in the real Klein–Gordon field.
In summary, the algebra of observables for the real Klein–Gordon field is generated by the objects 𝜑( 𝑓 ),

𝑓 ∈ C∞
0 (𝑀), and satisfies the conditions

i. 𝜑( 𝑓1) + _𝜑( 𝑓2) = 𝜑( 𝑓1 + _ 𝑓2), for all 𝑓1, 𝑓2 ∈ C∞
0 (𝑀) and all _ ∈ C;

ii. 𝜑((∇𝑎∇𝑎 − 𝑚2) 𝑓 ) = 0 for all 𝑓 ∈ C∞
0 (𝑀);

iii. 𝜑( 𝑓 )∗ = 𝜑( 𝑓 ) for all 𝑓 ∈ C∞
0 (𝑀);

iv. [𝜑( 𝑓1), 𝜑( 𝑓2)] = 𝑖𝐸 ( 𝑓1, 𝑓2)1, for all 𝑓1, 𝑓2 ∈ C∞
0 (𝑀).

2.2 Notable States

Vacua

It means little to have an algebra without at least some physically interesting states to go with it. We will begin
by discussing the curved spacetime generalizations of the vacuum state of ordinary quantum field theory.
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In ordinary quantum field theory, the vacuum is often thought of as the state of minimum energy, or
the unique Poincaré-invariant state. Neither of these two classification are available in a general spacetime.
Hence, we will need to find other manners of defining what is a (not the) vacuum state.

Firstly, let us notice that we can characterize a state by specifying how it acts on every observable. Within
the algebra we just built we can characterize a state by providing its 𝑛-point correlation functions, or Wightman
functions [51]. These are the functions given by

𝑊𝑛 ( 𝑓1, . . . , 𝑓𝑛) = 𝜔(𝜑( 𝑓1) · · · 𝜑( 𝑓𝑛)). (2.2.1)

The Minkowski vacuum correlation functions have an interesting property: they satisfy

𝑊2𝑛−1 ( 𝑓1, . . . , 𝑓2𝑛−1) = 0, (2.2.2)

and

𝑊2𝑛 ( 𝑓1, . . . , 𝑓2𝑛) =
∑︁

pairings
𝑊2 ( 𝑓𝑖1 , 𝑓𝑖2 ) · · ·𝑊2 ( 𝑓𝑖2𝑛−1 , 𝑓𝑖2𝑛 ). (2.2.3)

This is known as Wick’s theorem for the case of the Minkowski vacuum, but for us it will be the definition of
a Gaussian, or quasifree, state. Our first requirement for a vacuum state is thus that it be Gaussian.

Gaussian states still have a lot of possibilities. To further restrict the notion of a vacuum, we will also
impose that vacua should be pure states.

As we shall see on Chapter 3, this definition conforms with the traditional meaning of a vacuum being
annihilated by all annihilation operators. This is meant in the sense that it will always be possible to represent
the algebra of observables in a Fock space in which a vacuum is annihilated by all annihilation operators as
defined in such Fock space.

Thermal States

While the vacuum is perhaps the most important state in quantum field theory (QFT) in flat spacetime, another
important class of states are those in thermal equilibrium. In the algebraic approach, the notion of thermal
equilibrium is given by means of the Kubo–Martin–Schwinger (KMS) condition [33, 35]. Our discussion is
inspired by the one given by Raszeja [43, Sec. 2.3].

Suppose we have a system with finitely many degrees of freedom in contact with a thermal reservoir at
inverse temperature 𝛽 = 1

𝑇
(we take 𝑘𝐵 = 1). Assuming the system to be in thermal equilibrium, its state is

described by the density matrix

𝜌 =
𝑒−𝛽𝐻

𝑍
, (2.2.4)

where 𝑍 = tr
[
𝑒−𝛽𝐻

]
is the partition function for the system and 𝐻 its Hamiltonian.

We take a finite system to provide us with some motivation and intuition while avoiding the difficulties
that occur in larger systems. In this simplified case we can work with density matrices, but in field theory
we will not always have a privileged Hilbert space. Therefore, we would like to obtain a purely algebraic
condition that expresses thermal equilibrium.

Thermal equilibrium is a notion closely related to the time evolution of a system. Hence, it is natural that
to discuss equilibrium we need to consider some sort of time evolution.

In the context of finite quantum systems, this evolution is ruled by the Heisenberg equation of motion and,
for a time-independent Hamiltonian, it is given by

𝐴(𝑡) = 𝑒𝑖𝑡𝐻𝐴(0)𝑒−𝑖𝑡𝐻 , (2.2.5)

where 𝐴(𝑡) is some observable at time 𝑡 and we take ℏ = 1. Notice that we can also see this time evolution as
a one-parameter group of automorphisms acting on the algebra A. More specifically, we can write

\𝑡 (𝐴) = 𝑒𝑖𝑡𝐻𝐴𝑒−𝑖𝑡𝐻 (2.2.6)
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to denote the time evolution of 𝐴 by an amount 𝑡. While unusual in ordinary quantum mechanics, this notation
will serve us well in the following.

Notice that the exponentials that occur on the definition of \𝑡 are similar to the exponential that occurs in
the expression for a density matrix in thermal equilibrium, apart from the fact that 𝜌 involves a real exponential
and \𝑡 involves imaginary exponentials. It is tempting, however, to consider an analytic continuation of \𝑡 to
the complex 𝑡 plane. If this is possible, then notice that, given 𝐴, 𝐵 ∈ A, we have

𝜔𝜌 (𝐵𝐴) = tr[𝐵𝐴𝜌], (2.2.7a)

=
1
𝑍

tr
[
𝐵𝐴𝑒−𝛽𝐻

]
, (2.2.7b)

=
1
𝑍

tr
[
𝐴𝑒−𝛽𝐻𝐵

]
, (2.2.7c)

=
1
𝑍

tr
[
𝐴𝑒−𝛽𝐻𝐵𝑒+𝛽𝐻𝑒−𝛽𝐻

]
, (2.2.7d)

=
1
𝑍

tr
[
𝐴\𝑖𝛽 (𝐵)𝑒−𝛽𝐻

]
, (2.2.7e)

= tr
[
𝐴\𝑖𝛽 (𝐵)𝜌

]
, (2.2.7f)

= 𝜔𝜌 (𝐴\𝑖𝛽 (𝐵)). (2.2.7g)

In the previous expressions, 𝜔𝜌 is the state defined through 𝜔𝜌 (𝐴) = tr[𝐴𝜌].
Eq. (2.2.7) leads one to the general expression

𝜔(𝐵𝐴) = 𝜔(𝐴\𝑖𝛽 (𝐵)), (2.2.8)

where \𝑡 can be any one-parameter group of automorphisms in the algebra, as long as it admits a suitable
analytic extension. This property, known as the KMS condition, was originally used in [22] as a definition for
equilibrium states in an algebraic setting.

It should be pointed out that while Eq. (2.2.8) is sufficient for 𝐶∗-algebras, general ∗-algebras are more
subtle and require other additional conditions for the expectation values of the form 𝜔(𝐴1 · · · 𝐴𝑛) with 𝑛 > 2
[29]. Nevertheless, our main focus is on Gaussian states, which are completely determined by the two-point
function. Hence, for our purposes, Eq. (2.2.8) is enough. We say that a state satisfying Eq. (2.2.8) is a KMS
state for the one-parameter group of automorphisms \𝑡 at inverse temperature 𝛽.

There is an important difference between how we defined vacua and how we defined KMS states. Notice
that a vacuum for us is a state that is Gaussian and pure. These properties are related exclusively to the state
and the algebra of observables, and are independent of any other choice or input from the physicist. Hence,
given a state on an algebra of observables, one can immediately say whether it is a vacuum. KMS states, on
the other hand, depend on the choice of a group of automorphisms. In other words, it depends on a choice of
time evolution. Two different choices of time evolution might disagree on whether a given state is a KMS
state. Hence, thermal equilibrium depends on something in addition to the state itself. In quantum field theory
in curved spacetime (QFTCS) this is relevant because different observers will have different definitions of
time evolution. Hence, a state might be a KMS state for an observer, but not for another. Furthermore, two
different observers might agree that a state is a KMS state, but disagree on what is its temperature. This is
well illustrated by the Unruh effect, which shows that different observers can perceive the same vacuum state
as having different temperatures depending on their acceleration.

Hadamard States

While we have so far focuses on linear fields, computing expectation values of nonlinear field combinations is
essential in physics. For example, the stress-energy-momentum tensor is nonlinear in the quantum fields.

The main difficulty with nonlinear objects is the fact that the fields are distributions, and distributions
not always admit nonlinear operations to be performed upon them. For example, while 𝛿(𝑥) makes sense,
𝛿(𝑥)2 = 𝛿(𝑥)𝛿(0) does not.
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Notice, however, that this is only a problem in the coincidence limit

lim
𝑦→𝑥

𝛿(𝑥)𝛿(𝑦). (2.2.9)

Similarly, the issue with the 𝑛-point functions will only arise in the limit

lim
𝑦→𝑥

𝜔(𝜑(𝑥)𝜑(𝑦)), (2.2.10)

which thus refers to the ultraviolet (UV) behavior of the state 𝜔.
In Minkowski spacetime, this is dealt with by requiring operator expressions to be normal ordered,

which means essentially ignoring unphysical infinities when they are obviously not there. Alternatively,
one could say that the expectation value that really matters is not the expectation value itself, but rather the
vacuum-subtracted expectation value, which has thus a good behavior in the UV limit.

In curved spacetime, we shall thus require of physical states that, in the UV limit, they behave in a
manner similar to the Minkowski vacuum. Thanks to the equivalence principle, this expression can be given a
meaningful sense. In fact, it admits a beautiful formulation within microlocal analysis, as reviewed in [1, 9,
53].

It should be pointed out that, in a stationary spacetime—i.e., a spacetime with a notion of timelike
symmetry—there is at most one stationary Hadamard vacuum [31]. Furthermore, one should notice that the
notion of state is global, and hence might depend on features spacelike related to the point under consideration.
For example, Schwarzschild spacetime admits at least three different physical vacua depending on which
regions of Schwarzschild spacetime are being considered.

2.3 The Unruh Effect

Once the basis of the theory has been outlined, let us consider the case of acceleration-induced thermality in
Minkowski spacetime. We shall do this discussion in four different ways throughout the text, since each of
them can play different roles in explaining the physics going on. Furthermore, since experimental probing of
the Unruh effect has only recently begun (the first claim of a direct observation has been made in [34]), the
existence of many paths to the same conclusion helps us to understand why it must be true.

Before we get to the actual calculations, let us explain what we are about to do. The Fulling–Davies–Unruh
effect [11, 19, 55], often called simply the Unruh effect, is the result that “for a [. . . ] quantum field in its
vacuum state in Minkowski spacetime, an observer with uniform acceleration 𝑎 will feel that he is bathed
by a thermal distribution of quanta of the field at temperature 𝑇 given by 𝑘𝐵𝑇 = ℏ𝑎

2𝜋𝑐 ” [56]. It consists of a
prediction made with QFTCS methods in flat spacetime, and challenges one’s usual understanding of the
meaning of “particles”, since different observers are shown to have different particle interpretations of the
same physical state. More details will be given in the following discussion, and even more can be found in the
review [10].

In all of the following approaches, we consider Minkowski spacetime, M = (R4, [
𝑎𝑏
). The line element

is given in Cartesian coordinates by

d𝑠2 = − d𝑡2 + d𝑥2 + d𝑦2 + d𝑧2 . (2.3.1)

When analyzing the Unruh effect, our interest will not be in the entire Minkowski spacetime, but rather on
a region known as the right Rindler wedge [44]. We will denote it by

𝑅 =
{
(𝑡, 𝑥, 𝑦, 𝑧) ∈ R4; 𝑥 > |𝑡 |

}
. (2.3.2)

This region can be understood as a globally hyperbolic spacetime in its own right, and it is particularly useful
to mimic some properties found in black hole spacetimes. Many properties of the Rindler spacetime are
reviewed, for example, in the books [15, 45]. Since the literature on this spacetime is vast, we shall state some
of its properties without proof.
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𝑟
=

0

[
=
+∞

𝑟
= 0

[
= −∞

Figure 2.2: Depiction of how the Rindler coordinates given on Eq. (2.3.3) cover the right Rindler wedge. The hyperbolae
are curves of constant 𝑟, while the straight lines are curves of constant [.

It is convenient for our purposes to cover the Rindler spacetime using the so-called Rindler coordinates
[44, 45]. We define them through

𝑡 = 𝑟 sinh 𝑎[ and 𝑥 = 𝑟 cosh 𝑎[, (2.3.3)

for constant 𝑎 > 0. They are illustrated on Fig. 2.2. This definition leads to the line element

d𝑠2 = −𝑎2𝑟2 d[2 + d𝑟2 + d𝑦2 + d𝑧2 . (2.3.4)

Radar coordinates [36], which use 𝑟 = 𝑎−1𝑒𝑎b , are also common in the literature.
Notice that surfaces of constant [ are Cauchy surfaces. Furthermore, the spacetime is static with Killing

field
(

𝜕
𝜕[

)𝑎
. Since a four-dimensional spacetime has at most ten Killing fields and this is a section of

Minkowski spacetime—which has its Killing fields as Poincaré transformations—we know that this Killing
field is somehow related to Poincaré transformations. It turns out it is simply the generator of boosts along
the 𝑥 direction. It also happens to be proportional to the four-velocities of observers with constant proper
acceleration. In fact, the parameter 𝑎 introduced earlier is the proper acceleration of the observers moving

along the locus with [
𝑎𝑏

(
𝜕
𝜕[

)𝑎 (
𝜕
𝜕[

)𝑏
= −1.

The orbits induced by Lorentz boosts on Minkowski spacetime are illustrated on Fig. 2.3 on the next page.
Our first derivation follows the algebraic spirit we have been establishing so far. We follow the discussion

given by [29].
To obtain the desired QFT, we can simply consider the algebra of observables A(M), but now restrict it

to only (linear combinations, products, and involutions of) observables of the form 𝜑( 𝑓 ) with supp 𝑓 ⊆ 𝑅 (a
condition that implies supp 𝑓 ∩ 𝜕𝑅 = ∅). Through this restriction, we get to the subalgebra A(𝑅) ⊆ A(M).

If 𝜔 is a state on A(M), it is also a state on A(𝑅)—after all, we are simply considering less observables.
Hence, the Minkowski vacuum defines a state on A(𝑅). We desire to characterize it.

For simplicity, let us assume a massless field. In this case, we know that the two-point function is given by

𝑊2 (𝑥1, 𝑥2) = w-lim
Y→0+

1
4𝜋2 (𝑥`1 − 𝑥

`

2 − 𝑖Y𝑇 `) (𝑥1
` − 𝑥2

` − 𝑖Y𝑇` )
, (2.3.5)
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𝑆

Σ𝑅Σ𝐿

𝑅𝐿

𝐹

𝑃

𝔥𝐴

𝔥𝐵

Figure 2.3: Orbits induced by Lorentz boosts on 1 + 1-dimensional Minkowski spacetime. Notice that on the left and
right Rindler wedges (𝐿 and 𝑅, respectively) the orbits are timelike, while they are spacelike on the remaining
wedges. On the null hypersurfaces 𝔥𝐴 =

{
(𝑡, 𝑥, 𝑦, 𝑧) ∈ R4; 𝑡 = 𝑥

}
and 𝔥𝐵 =

{
(𝑡, 𝑥, 𝑦, 𝑧) ∈ R4; 𝑡 = −𝑥

}
that

separate the wedges the orbits are also null. The spacelike submanifold 𝑆 = 𝔥𝐴 ∩ 𝔥𝐵 is comprised of fixed
points of the isometry orbits. Σ𝑅 (resp. Σ𝐿) is a Cauchy surface for the right (left) Rindler wedge.

which can be derived using the expressions given in App. V.2 of [6]. w-lim is the weak limit and 𝑇𝑎 stands
for any future-directed timelike vector. Taking it to be

(
𝜕
𝜕𝑡

)𝑎
, we find that, in Cartesian coordinates,

𝑊2 (𝑥1, 𝑥2) = w-lim
Y→0+

1
4𝜋2

[
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2 − (𝑡1 − 𝑡2 − 𝑖Y)2

] . (2.3.6)

These expressions hold for the entire Minkowski spacetime, not only on the right Rindler wedge. In
particular, notice they mean there are correlations between the left and right Rindler wedges, where the left
wedge is defined as 𝐿 =

{
(𝑡, 𝑥, 𝑦, 𝑧) ∈ R4; 𝑥 < −|𝑡 |

}
. When restricting the Minkowski vacuum to the right

Rindler wedge, we drop these correlations, meaning the state can no longer be pure.
It turns out the state is not only mixed, but also a KMS state at inverse temperature 𝛽 = 2𝜋

𝑎
for the isometry

[ ↦→ [+ 𝜏, where 𝜏 is some arbitrary parameter. In other words, it is thermal with respect to the time-evolution
prescribed by accelerated observers, with temperature proportional to the acceleration.

To see this in the algebraic approach, we must show that the state satisfies the KMS condition. The
Minkowski vacuum is Gaussian, and hence we essentially want to show that [29]

𝜔(𝜑( 𝑓 )\𝜏+𝑖𝛽 (𝜑(𝑔))) = 𝜔(\𝜏 (𝜑( 𝑓 ))𝜑(𝑔)), (2.3.7)

where \ denotes the isometry [ ↦→ [ + 𝜏. To do so, one can use Eqs. (2.3.3) and (2.3.6) on the preceding page
and on the current page to show that

𝑊2 (𝑥1, \𝜏+𝑖𝛽 (𝑥2)) = 𝑊2 (\𝜏 (𝑥2), 𝑥1). (2.3.8)

This can be shown by direct calculation.

2.4 The Hawking Effect

An effect similar to the Unruh effect, but that predates it historically, is the Hawking effect [26, 27]. It concerns
the observation of particle creation in a spacetime containing a black hole. We shall discuss it without much
detail (more information and detailed calculations can be found in references such as [27, 59–61]).
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This time, we shall consider three different vacua and discuss qualitatively the results obtained for each
one of them.

The Hartle–Hawking Vacuum

Our first scenario is as following. For simplicity, we consider an eternal Schwarzschild black hole. Its Penrose
diagram is depicted in Fig. 2.4. In this case, there is exactly one stationary Hadamard vacuum, called the
Hartle–Hawking state [25]. Detailed properties about it and other vacua that we shall mention can be found in
the book [17].

black
hole

white
hole

our
universe

“parallel”
universe

Figure 2.4: Penrose diagram for an eternal black hole. The zigzagged lines depict physical singularities. Each point inside
the diagram is actually a 2-sphere.

The Hartle–Hawking vacuum is a thermal equilibrium state at the Hawking temperature,

𝑇𝐻 =
ℏ𝑐3

8𝜋𝐺𝑀𝑘𝐵
. (2.4.1)

This state can be thought to model a “black hole in a box”, for it involves not only thermal radiation
coming from the black hole region, but incoming modes from infinity. Due to the fact that this effect is derived
mimicking the Unruh effect—as done in [61]—this is an instance of the Unruh effect in curved spacetimes.

The Unruh Vacuum

A second interesting vacuum in the Schwarzchild spacetime is the Unruh vacuum, which physically corresponds
to the situation in which the black hole arises from gravitational collapse of a star, for example. This is
pictured in Fig. 2.5 on the next page.

This physical situation can also be pictured as an eternal Schwarzschild black hole, but with different
boundary conditions. As depicted in Fig. 2.6 on the following page, we do not need to consider the white
hole’s event horizon when considering a black hole formed by gravitational collapse. Therefore, this time,
when we look for a stationary Hadamard state, the horizon associated with the white hole should be ignored.

The vacuum now cannot be the Hartle–Hawking vacuum, for it involves modes coming from the white
hole, which simply does not exist in our present scenario. Instead, we get the Unruh vacuum. This state fails
to be Hadamard at the white hole’s event horizon, but that is not an issue, for the white hole does not exist in
this physical situation anyway.

The Unruh vacuum leads to a different prediction when compared to the Hartle–Hawking vacuum. It is
still a thermal state at the same Hawking temperature of Eq. (2.4.1), but this time only modes coming from
the direction of the black hole are thermal. There is no contribution due to incoming modes from infinity.
This is known as the Hawking effect, and was originally predicted in [26, 27].
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Figure 2.5: Penrose diagram for a black hole arising from gravitational collapse. The zigzagged line depict a physical
singularity. Each point inside the diagram is actually a 2-sphere.

Figure 2.6: Penrose diagram for a black hole arising from gravitational collapse, as seen a piece of the eternal Schwarzschild
black hole. Notice the blue matter covers the purple horizon that bounded the “white hole” and the “parallel
universe” in Fig. 2.4 on the preceding page. The zigzagged lines depict physical singularities. Each point
inside the diagram is actually a 2-sphere.

The Boulware Vacuum

At last, one may question whether there is thermal radiation coming from planets or stars due to quantum
effects. The answer is no, and the reason is that the different physical situation given by such objects leads to a
different physical vacuum.

The Penrose diagrams for this new physical scenario are given in Figs. 2.7 and 2.8 on the facing page.
Notice that the absence of horizons implies the physical vacuum should now not include any modes trespassing
the horizons. Thus, the Hartle–Hawking and Unruh vacua are already excluded.

The stationary Hadamard vacuum we can get now is the so-called Boulware vacuum. It is a vacuum at
zero temperature, in the sense that a static observer sees no particles are all coming from either the object or
from infinity. This state is not admissible in the previous situations because it fails to be Hadamard at the
future and past event horizons, which is meaningless when the physical scenario includes no horizons.

As a consequence, no Hawking or Unruh radiation is observed near a static planet or star, even though an
observer standing on top of the planet is technically accelerated. Hence, notice how the equivalence principle
is not enough to derive thermal effects in curved spacetimes, for the vacua themselves are global constructions.
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Figure 2.7: Penrose diagram for a static object, such as a star or a planet. Each point inside the diagram is actually a
2-sphere.

Figure 2.8: Penrose diagram for a static object, such as a star or a planet, as seen a piece of the eternal Schwarzschild
black hole. Notice the blue matter covers the both the horizons depicted in Fig. 2.4 on page 15. The zigzagged
lines depict physical singularities. Each point inside the diagram is actually a 2-sphere.

2.5 Criticism of the Algebraic Approach

While the algebraic approach is powerful and general, it should be recognized that it is difficult to perform
calculations with it. While the definition of a KMS state is sufficiently clear and the Minkowski vacuum is
sufficiently simple so that the computation of the Unruh effect is not difficult, most calculations within the
algebraic approach might not be straightforward.

Its advantage, nevertheless, lies on the myriad of situations it can be applied to. It provides a satisfactory,
and mathematically rigorous, definition of a QFT in an arbitrary globally hyperbolic spacetime. It also has
no preference of notion of “particles” nor does it require special symmetries or congruences of observers.
Therefore, it allows one to prove theorems and study QFTCS in a fairly general setting.

Hence, it should be seen as a technical tool intended to explore what is QFT, rather than a calculation
method to obtain quantitative results.

2.6 Reading Recommendations

Most of our discussion in this chapter is inspired by the review by Hollands and Wald [29]. Our definition of
Gaussian states follows Khavkine and Moretti [32]. A good reference on understanding the KMS condition is
the PhD dissertation by Raszeja [43]. Hadamard states are discussed in further detail in many references, such
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as the review by Khavkine and Moretti [32], and there is a pedagogical summary in the author’s master thesis
[1]. The books by Birrell and Davies [5] and Frolov and Novikov [17] discuss the three different vacua in
Schwarzschild spacetime.
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Three

Fock Space Representations
We discuss how to connect the algebraic approach with the more usual Fock space approach to quantum field
theory. Using it, we rederive the Unruh effect by means of a Bogolyubov transformation.

3.1 Algebraic Representations

Usually, quantum mechanics is discussed in terms of Hilbert spaces, not in terms of algebras. As a consequence,
the procedure we have taken so far may seem a bit awkward. We shall now discuss how to recover the Hilbert
space approach.

When working with a Hilbert space H , the observables are linear operators acting on H . We denote this
space of linear operators as L(H). We would then like to relate the algebra of observables, A, to L(H)
somehow. More specifically, we would like to have a linear map 𝜌 : A → L(H) such that 𝜌(𝐴𝐵) = 𝜌(𝐴)𝜌(𝐵)
and 𝜌(𝐴∗) = 𝜌(𝐴)∗. 𝜌 is said to be a representation of the algebra A on the Hilbert space H . Hence, a
representation of an algebra on a Hilbert space is a “copy” of the algebra in the operators acting on the Hilbert
space. This copy may or may not be faithful: nothing prevents a representation from assigning the same
operator on L(H) to different elements of A. If the representation is one-to-one, it is said to be faithful.

Suppose now we are given an algebra A and a state 𝜔 : A → C. It is possible to perform a procedure
known as the Gelfand–Naimark–Segal (GNS) construction that yields a Hilbert space H on which one can
represent the algebra A by means of operators acting on H . In other words, the GNS construction takes an
algebra A and some state 𝜔 and yields all of the elements of a representation 𝜌 : A → L(H).

The technical details of the GNS construction theorem vary depending on the assumptions taken. [32]’s
Theorem 5.1.13 is the theorem for unital ∗-algebras (i.e., ∗-algebras which have a unit element), while most
books on 𝐶∗-algebras discuss the 𝐶∗ case—which is the one usually meant when one speaks of the GNS
construction. We will omit the details and focus on the physical meaning of the theorem.

Specifically, given a ∗-algebra satisfying some assumptions and some chosen state 𝜔 on said algebra, the
GNS construction yields us

i. a Hilbert space H ;

ii. a representation 𝜌 : A → L(H);

iii. a vector |𝜔⟩ ∈ H .

This triple has the property that 𝜔(𝐴) = ⟨𝜔 |𝜌(𝐴)𝜔⟩ for all 𝐴 ∈ A, and hence |𝜔⟩ represents 𝜔 as a vector in
the Hilbert space. It also holds that∗

{𝜌(𝐴) |𝜔⟩ ; 𝐴 ∈ A} = H . (3.1.1)

The GNS triple is also unique up to unitary isomorphism, i.e., other triples with the same properties are
related to the GNS triple by a unitary transformation. Do notice, however, that the GNS triple assumes a state
underlying its construction, and different choices of states may lead to unequivalent representations.

∗More precisely, the left-hand side of Eq. (3.1.1) is dense on the Hilbert space.
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One may wonder whether two representations of the same algebra A are always ensured to be equivalent.
In other words, suppose (H1, 𝜌1) and (H2, 𝜌2), 𝜌𝑖 : A → L(H𝑖), are representations of A. Is it always
possible to find a unitary transformation 𝑈 : H1 → H2 such that 𝜌(𝐴)2 = 𝑈𝜌1 (𝐴)𝑈∗? This is the most basic
requirement for the two Hilbert spaces to yield the same theory. If we can’t find such a transformation, then
the inner products in a Hilbert space might have values different from those on the other Hilbert space. Hence,
they can lead to different descriptions.

For quantum systems with a finite number of degrees of freedom, this question is answered by the
Stone–von Neumann theorem [see, for example, 24, Theorem 14.8], which ensures that all representations of
the canonical commutation relations (CCR) for a system with finitely many degrees of freedom are equivalent∗.
However, the theorem fails in the case of infinitely many degrees of freedom, i.e., for field theory. Therefore,
we might get non-equivalent Hilbert spaces.

The issue with getting non-equivalent Hilbert spaces is we cannot tell which one is the “correct” description.
In some situations, symmetry considerations might allow us to pick a preferred Hilbert space out of all
possible ones. For example, in Minkowski spacetime there is a single Poincaré-invariant state, the Minkowski
vacuum. Hence, it seems natural to pick the Hilbert space obtained by using the GNS construction with
the Minkowski vacuum. This leads one to the usual treatment of quantum field theory (QFT) given, e.g., in
[62]. Similar comments are applicable to QFT in stationary spacetimes such as Schwarzschild or De Sitter
spacetimes, but not in a general curved spacetime.

Even in the occasion two different representations are equivalent, we should remark they can still have
different interpretations. For example, in QFT, the Hilbert space is often taken to be a Fock space, which has
a natural interpretation in terms of “particles”. The notions of “particle” associated to the two equivalent Fock
spaces might not be the same, and hence the unitary transformation will not preserve particle number. This
occurs, for example, in Friedmann–Lemaître–Robertson–Walker universes with compact Cauchy surfaces.
Nevertheless, there is no issue: we are interested in a quantum theory of fields, not of particles. However, it
makes it clear that careless dependence on a Fock space might mix the actual physical content of the theory
with misconceptions due to a belief in “particles” as fundamental entities.

3.2 Fock Representations in Stationary Spacetimes

Many spacetimes of interest end up being stationary or asymptotically stationary. For example, the Kerr–
Newman family, De Sitter spacetime, Minkowski spacetime and many more are stationary. When working
in these spacetimes, one can exploit the available stationary symmetry when doing quantum field theory in
curved spacetime (QFTCS). In this appendix, we will describe a qualitative and “handwaving” understanding
of the role of symmetry. More detailed expositions can be found in the discussions by Khavkine and Moretti
[32, Sec. 5.2.7], Panangaden [40], and Wald [61, Sec. 4.3] and in the original papers by Ashtekar and Magnon
[4] and Kay [30].

Let us begin by considering quantum fields in Minkowski spacetime. In Minkowski spacetime, it is
common to discuss about creating and annihilating particles on a given state by using ladder operators. These
operators are defined by means of the Fourier decomposition of the Klein–Gordon field. Namely, one can
write

𝜑(𝑥) = 1
(2𝜋) 3

2

∫ (
𝑎 ®𝒑𝑒

𝑖 𝑝 ·𝑥 + 𝑎
†
®𝒑𝑒

−𝑖 𝑝 ·𝑥
) d3𝑝√︁

2𝜔®𝒑
, (3.2.1)

where
𝜔®𝒑 = +

√︃®𝒑2 + 𝑚2 (3.2.2)
and we choose conventions such that

[𝑎 ®𝒑 , 𝑎
†
®𝒒] = 𝛿 (3)

(
®𝒑 − ®𝒒

)
. (3.2.3)

∗Technically, the Stone–von Neumann theorem is a statement about the Weyl algebra, which corresponds to an exponentiated version
of the CCR algebra [see 61, Chap. 2, for details]. While the CCR algebra is merely a ∗-algebra, the Weyl algebra is a 𝐶∗-algebra, and
hence it “behaves better” from a mathematical perspective.
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Notice that Eq. (3.2.1) on the facing page decomposes the field 𝜑 in terms of positive and negative
frequencies. In other words, in terms of solutions associated with positive and negative energies. This
difference between positive and negative energies is then used to define the creation and annihilation operators.

It should be remarked that ortochronous Poincaré transformations never flip the sign of the time-component
of a four-vector. Hence, all inertial observers in Minkowski spacetime always agree on the sign of the energy
of a given particle. As a consequence, all inertial observers agree on the decomposition given on Eq. (3.2.1)
on the preceding page. It follows that they all agree that all annihilation operators annihilate the Minkowski
vacuum and they all agree on how many particles there are in a given state of the quantum field.

From this discussion, we can already conclude that, in some sense, particles are an “energy-dependent
concept”. The separation between positive and negative energy is literally the way we usually define the
ladder operators used in QFT in flat spacetime to create and annihilate particles. Loosely speaking, if two
observers have different notions of what is energy, they might have two different notions of what is a particle.

The natural question to ask is then: what is energy? Intuitively, we can understand energy as being the
Noether charge associated with time-translation symmetry—i.e., energy is the conserved quantity induced by
a timelike Killing field.

We now know what to expect. In a stationary spacetime, we have a timelike Killing field. Hence, in some
sense we have an available notion of energy. This notion of energy can then be used to induce a preferred
notion of particles, which leads us to a natural choice of Fock space. Formally, one defines the vacuum |0⟩
by imposing it is annihilated by all annihilation operators and defines every other state in the Fock space by
applying creation operators. See the previously mentioned references for a more rigorous approach.

There is, however, an interesting issue with this discussion. Consider Minkowski spacetime once again.
The Minkowski vacuum is the unique Poincaré invariant state. Nevertheless, if we chose to restrict our
attention to the right Rindler wedge as necessary when discussing the Unruh effect, then we would also be
dealing with a different stationary spacetime and would be able to construct a vacuum that is invariant under
the boost symmetry. This is known as the Rindler vacuum. Do these two states coincide?

They do not. By construction, the notion of time employed in the definition of the Rindler vacuum is the
notion of proper time of an accelerated observer. On the other hand, Minkowski vacuum is built upon the
notion of time as defined by inertial observers. Hence, the Rindler vacuum corresponds to the quantum state
of the field in which an accelerated observer would see no particles. The Minkowski vacuum corresponds to
the state of the field in which an inertial observer would see no particles. The Unruh effect proves that these
two states do not coincide.

There are still more striking differences. The boost symmetries of Minkowski spacetime have a geometric
structure known as a “bifurcate Killing horizon”. Roughly speaking, this means the Killing field becomes null
on a pair of crossing hypersurfaces, as depicted on Fig. 2.3 on page 14. More detailed definitions can be
found, e.g., in the discussions by Kay and Wald [31, Sec. 2] and Wald [61, Sec. 5.2]. Other examples of
spacetimes with Killing horizons are Schwarzschild, De Sitter, Schwarzschild–De Sitter, and Kerr spacetimes,
among others. It was shown by Kay and Wald [31] that spacetimes with such a structure admit at most one
quasifree state that is both stationary and Hadamard.

Since both the Minkowski and Rindler vacua are stationary quasifree states, one of them must fail to
be Hadamard. It does happen that the Rindler vacuum has an unphysical build up of energy near the null
hypersurfaces 𝑡 = ±𝑥 [see 5, Eq. (6.157)].

Notice that this uniqueness result does not imply existence, and our earlier statement about existence of
stationary states does not imply they are Hadamard. In fact, Kay and Wald [31] have also shown there are no
stationary Hadamard states on Kerr or Schwarzschild–De Sitter spacetimes.

3.3 Bogolyubov Transformations and the Unruh Effect

Next we shall rederive the Unruh effect by using Fock space techniques. To do so, we will for simplicity work
in 1 + 1 dimensions with a massless field, which makes the computations easier because the theory becomes
conformal. We follow the discussion by Mukhanov and Winitzki [38].
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The action is
𝑆 =

1
2

∫
𝑔𝑎𝑏∇𝑎𝜑∇𝑏𝜑

√−𝑔 d2𝑥 . (3.3.1)

In inertial coordinates, we can write the action as

𝑆 =
1
2

∫
−
(
𝜕𝜑

𝜕𝑡

)2
+

(
𝜕𝜑

𝜕𝑥

)2
d𝑡 d𝑥 . (3.3.2)

In radar coordinates [36], defined as

𝑡 = 𝑎−1𝑒𝑎b sinh 𝑎[ and 𝑥 = 𝑎−1𝑒𝑎b cosh 𝑎[, (3.3.3)

the line element takes the form
d𝑠2 = −𝑒2𝑎b d[2 + 𝑒2𝑎b db2 , (3.3.4)

and hence the action reads

𝑆 =
1
2

∫
−
(
𝜕𝜑

𝜕[

)2
+

(
𝜕𝜑

𝜕b

)2
d[ db . (3.3.5)

The equations of motion are then
𝜕2𝜑

𝜕𝑡2
− 𝜕2𝜑

𝜕𝑥2 = 0 (3.3.6)

and
𝜕2𝜑

𝜕[2 − 𝜕2𝜑

𝜕b2 = 0. (3.3.7)

If we define 𝑢 = 𝑡 − 𝑥, 𝑣 = 𝑡 + 𝑥, 𝑈 = [ − b, and 𝑉 = [ + b, we find that the solutions to the equations of
motion must be of the forms

𝜑(𝑡, 𝑥) = 𝑓𝑅 (𝑢) + 𝑓𝐿 (𝑣) (3.3.8)

and
𝜑([, b) = 𝑔𝑅 (𝑈) + 𝑔𝐿 (𝑉). (3.3.9)

Notice that
d𝑠2 = − d𝑢 d𝑣 = −𝑒2𝑎 (𝑉−𝑈) d𝑈 d𝑉 . (3.3.10)

In order to avoid having terms such as d𝑢2, it must be true that 𝑢 and 𝑣 are each functions of only 𝑈 or 𝑉 each.
It turns out that [see, e.g., 61, p. 110] 𝑢 = 𝑢(𝑈) and 𝑣 = 𝑣(𝑉). More specifically, we have [38, Eq. (8.25)]

𝑢(𝑈) = − 𝑒−𝑎𝑈

𝑎
and 𝑣(𝑉) = + 𝑒

−𝑎𝑉

𝑎
. (3.3.11)

For more on this system of coordinates, see [36, 38].
This discussion lets us see that Eqs. (3.3.8) and (3.3.9) allows us to decompose the field in left-moving

and right-moving components. We shall then focus only on the right-moving components and know the
left-moving components work analogously.

We can then decompose the field in Fourier modes according to

𝜑(𝑡, 𝑥) = 1
√

2𝜋

∫ +∞

0

[
𝑎𝜔𝑒

−𝑖𝜔 (𝑡−𝑥 ) + 𝑎†𝜔𝑒
+𝑖𝜔 (𝑡−𝑥 )

] d𝜔
√

2𝜔
+ left-moving (3.3.12)

or
𝜑([, b) = 1

√
2𝜋

∫ +∞

0

[
𝑏Ω𝑒

−𝑖Ω([−b ) + 𝑏
†
Ω
𝑒+𝑖Ω([−b )

] dΩ
√

2Ω
+ left-moving. (3.3.13)

It can be verified that [
𝑎𝜔 , 𝑎

†
𝜔′

]
= 𝛿(𝜔 − 𝜔′) and

[
𝑏Ω, 𝑏

†
Ω′

]
= 𝛿(Ω −Ω′). (3.3.14)
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Our questions is then how to relate these two descriptions. We know that an inertial observer would
measure the number of particles of frequency 𝜔 in the vacuum as being〈

𝑎†𝜔𝑎𝜔

〉
= 0, (3.3.15)

for 𝑎𝜔 annihilates the Minkowski vacuum |0⟩𝑀 . However, what happens from the point of view of an
accelerated observer, who has as creation and annihilation operators 𝑏†

Ω
and 𝑏Ω rather than 𝑎

†
𝜔 and 𝑎𝜔?

In the Rindler wedge, the ladder operators must somehow be related to the inertial ladder operators, i.e.,

𝑏Ω =

∫ +∞

0
𝛼Ω𝜔𝑎𝜔 − 𝛽Ω𝜔𝑎

†
𝜔 d𝜔 . (3.3.16)

The normalization condition [𝑏Ω, 𝑏†Ω′ ] = 𝛿(Ω −Ω′) implies∫ +∞

0
𝛼Ω𝜔𝛼

∗
Ω′𝜔 − 𝛽Ω𝜔𝛽

∗
Ω′𝜔 d𝜔 = 𝛿(Ω −Ω′). (3.3.17)

Eq. (3.3.16) is known as a Bogolyubov transformation. Using it on Eq. (3.3.13) on the preceding page and
comparing with Eq. (3.3.12) on the facing page, we find that

𝑒−𝑖𝜔𝑢

√
𝜔

=

∫ +∞

0

[
𝛼Ω𝜔𝑒

−𝑖Ω𝑈 − 𝛽∗Ω𝜔𝑒
+𝑖Ω𝑈 ] dΩ

√
Ω
. (3.3.18)

Notice then that∫ +∞

−∞

𝑒−𝑖𝜔𝑢±𝑖Ω′𝑈

√
𝜔

d𝑈 =

∫ ∞

−∞

∫ +∞

0

[
𝛼Ω𝜔𝑒

−𝑖 (Ω∓Ω′ )𝑈 − 𝛽∗Ω𝜔𝑒
+𝑖 (Ω±Ω′ )𝑈

] dΩ
√
Ω

d𝑈 , (3.3.19a)

= 2𝜋
∫ +∞

0

[
𝛼Ω𝜔𝛿(Ω ∓Ω′) − 𝛽∗Ω𝜔𝛿(Ω ±Ω′)

] dΩ
√
Ω
, (3.3.19b)

=
2𝜋
√
Ω

[
𝛼±Ω′𝜔 − 𝛽∗∓Ω′𝜔

]
. (3.3.19c)

Since only values of Ω ≥ 0 lead to non-vanishing coefficients, we find that

𝛼Ω𝜔 =
1

2𝜋

√︂
Ω

𝜔

∫ +∞

−∞
𝑒−𝑖𝜔𝑢+𝑖Ω𝑈 d𝑈 , (3.3.20)

𝛽Ω𝜔 =
1

2𝜋

√︂
Ω

𝜔

∫ +∞

−∞
𝑒+𝑖𝜔𝑢+𝑖Ω𝑈 d𝑈 . (3.3.21)

With some manipulation, it can be shown that [see, for example, 38, p. 107]

|𝛼Ω𝜔 |2 = 𝑒
2𝜋Ω
𝑎 |𝛽Ω𝜔 |2. (3.3.22)

Next, we notice that the number of particles seem by the accelerated observer is

⟨𝑁Ω⟩ =
〈
𝑏
†
Ω
𝑏Ω

〉
, (3.3.23a)

=

∫
𝛽∗Ω𝜔′ 𝛽Ω𝜔

〈
𝑎𝜔′𝑎†𝜔

〉
d𝜔 d𝜔′ , (3.3.23b)

=

∫
𝛽∗Ω𝜔′ 𝛽Ω𝜔𝛿(𝜔′ − 𝜔) d𝜔 d𝜔′ , (3.3.23c)

=

∫
|𝛽Ω𝜔 |2 d𝜔 , (3.3.23d)
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where we used Eq. (3.3.16) on the previous page. To proceed, we notice that at Ω = Ω′, the normalization
condition Eq. (3.3.17) on the preceding page yields∫ +∞

0
|𝛼Ω𝜔 |2 − |𝛽Ω𝜔 |2 d𝜔 = 𝛿(0), (3.3.24)

and Eq. (3.3.22) on the previous page then implies∫ +∞

0
|𝛽Ω𝜔 |2 d𝜔 =

𝛿(0)
𝑒

2𝜋Ω
𝑎 − 1

, (3.3.25)

which therefore means
⟨𝑁Ω⟩ =

𝛿(0)
𝑒

2𝜋Ω
𝑎 − 1

, (3.3.26)

where 𝛿(0) plays the role of the infinite volume of the spacetime. If we were to pick a particle density rather
than a particle number, we would have

𝑛Ω =
1

𝑒
2𝜋Ω
𝑎 − 1

, (3.3.27)

which can be recognized as the Bose–Einstein distribution at temperature 𝑇 = 𝑎
2𝜋 , showing once again the

Unruh effect.

3.4 Criticism of the Fock Space Approach

Fock space representations are extremely useful in order to perform calculations in stationary spacetimes, or
in asymptotically stationary spacetimes. Nevertheless, they are restricted by symmetry and by the existence of
convenient congruences of observables.

Hence, these representations should mostly be viewed as a calculational tool, rather than a rigorous
definition of what QFT actually is. They allow us to do computations conveniently, but do not claim any
further advantages.

3.5 Reading Recommendations

Khavkine and Moretti [32] discuss how Fock space representations arise for Gaussian states, and Wald [61]
works with them from scratch for stationary spacetimes. Most references on QFTCS will derive the Unruh
effect by means of a Bogolyubov transformation, which was originally employed by Hawking [27]. We
followed Mukhanov and Winitzki [38], but Wald [60, 61] works more carefully to find the quantum state in
the Fock space representation of accelerated observers, rather than only the expectation value.
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Four

Path Integrals

4.1 Introduction to Path Integrals

Most introductions to path integrals, such as those found in [42, 62, 66], see path integrals as an alternative
formulation of quantum theory and derive it from other principles. In quantum field theory in curved spacetime
(QFTCS), this approach fails for not every state admits a path integral formulation. Hence, we shall understand
path integrals merely as a notation.

Shortly, the path integral approach is a manner of employing directly the Gell-Mann–Low formula [20]. It
states that

⟨Ω|T [𝜑(𝑥) · · · 𝜑(𝑦)] |Ω⟩ = lim
𝑇→∞(1−𝑖 𝜖 )

〈
0
���T [

𝜑(𝑥) · · · 𝜑(𝑦)𝑒−𝑖
∫ +𝑇
−𝑇 𝐻𝐼 (𝑡 )d𝑡

] ���0〉〈
0
���T [

𝑒−𝑖
∫ +𝑇
−𝑇 𝐻𝐼 (𝑡 )d𝑡

] ���0〉 , (4.1.1)

for a small 𝜖 > 0. In the above, |Ω⟩ represents the interacting vacuum, while |0⟩ represents the non-interacting
vacuum. Hence, it is convenient to write

⟨Ω|T [𝜑(𝑥) · · · 𝜑(𝑦)] |Ω⟩ =
∫

𝑒𝑖𝑆 [𝜑 ]𝜑(𝑥) · · · 𝜑(𝑦) D𝜑 , (4.1.2)

where one “integrates over 𝜑” in order to explicitly impose the Gell-Mann–Low formula from the start.
The Gell-Mann–Low formula holds true for the Minkowski vacuum, but what about other vacua? Notice

that the existence of a Hamiltonian requires us to have a stationary spacetime and a stationary vacuum for us
to even make sense of the formula. Hence, there is no reason to expect path integrals to make sense in general
spacetimes or for general states.

4.2 The Unruh Effect

Our path integral calculation mostly follows the original one due to Unruh and Weiss [57], but Crispino,
Higuchi, and Matsas [10, Sec. II.I] also present a summarized version.

Using Euclidean path integrals, we intend to show that the equality∗

⟨0𝑀 |T 𝜑(𝑥1) · · · 𝜑(𝑥𝑛) |0𝑀⟩ =
Tr

[
𝑒−𝛽𝐻𝑅T 𝜑(𝑥1) · · · 𝜑(𝑥𝑛)

]
Tr

[
𝑒−𝛽𝐻𝑅

] (4.2.1)

holds for all events 𝑥1, . . . , 𝑥𝑛 ∈ 𝑅 when 𝛽 = 2𝜋
𝑎

. In the previous expression, 𝐻𝑅 is the Rindler Hamiltonian,
i.e., the generator of translations with respect to proper time for an accelerated observer with acceleration 𝑎.
This is a different way of saying that 𝐻𝑅 generates translations with respect to the Rindler coordinate [, or

∗Notice that the time ordering operator T can be regarded as a coordinate-independent object. If 𝑥 ∈ 𝐽+ (𝑦) , this happens in all
coordinate systems, and hence the action of T on 𝜑 (𝑥 )𝜑 (𝑦) also does. If 𝑥 and 𝑦 are spacelike related, then 𝜑 (𝑥 ) and 𝜑 (𝑦) commute
and their ordering is irrelevant.
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26 4. Path Integrals

alternatively that it is 𝑎 times the boost generator. This equality states that 𝑛-point correlation functions in the
Minkowski vacuum and in a thermal state for the Rindler Hamiltonian are actually the same, and hence, if it
holds, it is a statement of the Unruh effect.

Let us begin by writing 𝐻𝑅 down explicitly. The general action for a scalar field in Minkowski spacetime
is

𝑆[𝜑] = −
∫ [

1
2
∇𝑎𝜑∇𝑎𝜑 +𝑉 (𝜑)

]
√−𝑔 d4𝑥 , (4.2.2)

where 𝑔 is the determinant of the metric. We chose to write the action in this way because it allows us
to simply see how it will occur in non-inertial coordinates. Notice also that this time we added a general
interaction potential 𝑉 (𝜑), and hence this derivation is not restricted to free or massless fields.

Using Eq. (2.3.4) on page 13, we can see that the action can be written in Rindler coordinates as

𝑆[𝜑] =
∫
𝑟>0

[
1

2(𝑎𝑟)2

(
𝜕𝜑

𝜕[

)2
− 1

2

(
𝜕𝜑

𝜕𝑟

)2
− ( ®∇⊥𝜑)2

2
−𝑉 (𝜑)

]
𝑎𝑟 d[ d𝑟 d2𝑥⊥ , (4.2.3)

where we are writing ®𝒙⊥ = (𝑦, 𝑧).
There is a difference between Eqs. (4.2.2) and (4.2.3) that should be pointed out. While Eq. (4.2.2) is

integrating over modes over the entire Minkowski spacetime, Eq. (4.2.3) is written in a coordinate system that
is only defined on the right Rindler wedge. Hence, in writing Eq. (4.2.3), we are already assuming we are only
paying attention to what happens on the right Rindler wedge.

In Rindler coordinates, the momentum canonically conjugate to 𝜑 is given by

𝜋 =
𝛿𝑆

𝛿
(
𝜕[𝜑

) =
𝜕[𝜑

𝑎𝑟
≡ 1

𝑎𝑟

𝜕𝜑

𝜕[
. (4.2.4)

Therefore, we get to the Hamiltonian

𝐻𝑅 =

∫
𝑟>0

[
𝜋2

2
+ 1

2

(
𝜕𝜑

𝜕𝑟

)2
+ ( ®∇⊥𝜑)2

2
+𝑉 (𝜑)

]
𝑎𝑟 d𝑟 d2𝑥⊥ . (4.2.5)

We then consider the partition function

𝑍𝑅 (𝛽) ≡ Tr
[
𝑒−𝛽𝐻𝑅

]
. (4.2.6)

As a path integral, it can be written as [39, Chap. 71]

𝑍𝑅 (𝛽) =
∫
𝜑 (0)=𝜑 (𝛽)

exp

(
−

∫
𝑟>0

∫ 𝛽

0
𝑎𝑟

[
𝜋2

2
+ 1

2

(
𝜕𝜑

𝜕𝑟

)2
+ ( ®∇⊥𝜑)2

2
+𝑉 (𝜑)

]
− 𝑖𝜋

𝜕𝜑

𝜕𝜏
d𝜏 d𝑟 d2𝑥⊥

)
D𝜑D𝜋 ,

(4.2.7)
where 𝜑(0) = 𝜑(𝛽) means the integral runs over field configurations with periodic boundary conditions in 𝜏

with period 𝛽.
The integral over 𝜋 is Gaussian. It can be solved by noticing that

𝑎𝑟𝜋2

2
− 𝑖𝜋

𝜕𝜑

𝜕𝜏
=

𝑎𝑟

2

(
𝜋 − 𝑖

𝑎𝑟

𝜕𝜑

𝜕𝜏

)2
+ 1

2𝑎𝑟

(
𝜕𝜑

𝜕𝜏

)2
. (4.2.8)

Therefore, up to a superfluous normalization factor, one has

𝑍𝑅 (𝛽) =
∫
𝜑 (0)=𝜑 (𝛽)

exp

(
−

∫
𝑟>0

∫ 𝛽

0

1
2𝑎𝑟

(
𝜕𝜑

𝜕𝜏

)2
+ 𝑎𝑟

[
1
2

(
𝜕𝜑

𝜕𝑟

)2
+ ( ®∇⊥𝜑)2

2
+𝑉 (𝜑)

]
d𝜏 d𝑟 d2𝑥⊥

)
D𝜑 .

(4.2.9)
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𝜏 = 𝛽

𝜏 = 0
𝑟

𝜏

𝐴0

(a)

𝑎𝛽
𝑥𝐸

𝑡𝐸

𝐴

(b)

Figure 4.1: Integration region before (𝐴0) and after (𝐴) the coordinate transformation done on Eq. (4.2.11). Based on
Figure 1 of the paper by Unruh and Weiss [57].

Notice this expression can be understood in terms of the Euclidean, finite-temperature version of Eq. (4.2.3)
on the facing page. Namely,

𝑍𝑅 (𝛽) =
∫
𝜑 (0)=𝜑 (𝛽)

𝑒−𝑆
𝛽

𝑅𝐸
[𝜑 ] D𝜑 , (4.2.10)

where the subscripts “𝑅𝐸” stand for “Rindler” and “Euclidean”. Notice that if we had chosen other coordinate
systems—such as an inertial coordinate system—the Euclidean action could be different.

We are free to perform the integral in the exponent of Eq. (4.2.9) on the preceding page in whichever way
we see fit. In particular, we can perform a change of variables according to

𝑡𝐸 = 𝑟 sin 𝑎𝜏 and 𝑥𝐸 = 𝑟 cos 𝑎𝜏. (4.2.11)

While these are inspired by our definition of Rindler coordinates, notice we are not changing to a new
coordinate chart on the manifold. We are only making a change of variables in the integral. One can then
show that∫

𝑟>0

∫ 𝛽

0

1
2𝑎𝑟

(
𝜕𝜑

𝜕𝜏

)2
+ 𝑎𝑟

[
1
2

(
𝜕𝜑

𝜕𝑟

)2
+ ( ®∇⊥𝜑)2

2
+𝑉 (𝜑)

]
d𝜏 d𝑟 d2𝑥⊥

=

∫
𝐴

1
2

(
𝜕𝜑

𝜕𝑡𝐸

)2
+ 1

2

(
𝜕𝜑

𝜕𝑥𝐸

)2
+ 1

2
( ®∇⊥𝜑)2 +𝑉 (𝜑) d𝑡𝐸 d𝑥𝐸 d2𝑥⊥ , (4.2.12)

where the integration region 𝐴 is illustrated on Fig. 4.1. Notice that Eq. (4.2.11) can only be single-valued if
𝛽𝑎 ≤ 2𝜋.

Consider now the case 𝛽 = 2𝜋
𝑎

. We can then write

𝑍𝑅

(
2𝜋
𝑎

)
=

∫
exp

(
−

∫
1
2

(
®∇4𝜑

)2
+𝑉 (𝜑) d4𝑥𝐸

)
D𝜑 , (4.2.13)

where we dropped the condition 𝜑(0) = 𝜑(𝛽), because it is now automatically implemented by the new
variables. Notice, however, that the right-hand side (RHS) of Eq. (4.2.13) is merely the generating functional
at zero source for the theory in inertial coordinates. Hence,

𝑍𝑅 (𝛽) =
∫

𝑒−𝑆𝑖𝐸 [𝜑 ] D𝜑 , (4.2.14)

where “𝑖𝐸” stands for “inertial” and “Euclidean”.
These ideas can be generalized in a straightforward manner to a generating functional in the presence of a

source, 𝑍 [𝐽]. In this case, functional derivatives with respect to the source allow us to obtain the 𝑛-point
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correlation functions. We then find that

⟨0𝑀 |𝜑(𝑥1
𝐸) · · · 𝜑(𝑥𝑛𝐸) |0𝑀⟩ =

Tr
[
𝑒−𝛽𝐻𝑅𝜑(𝑥1

𝐸
) · · · 𝜑(𝑥𝑛

𝐸
)
]

Tr
[
𝑒−𝛽𝐻𝑅

] . (4.2.15)

Notice this is not Eq. (4.2.1) on page 25. Eq. (4.2.15) is an equality among correlation functions on a
spacetime of Euclidean signature. However, the RHS of Eq. (4.2.1) on page 25 can be obtained from the
RHS of Eq. (4.2.15) by means of the analytic continuation 𝜏 = 𝑖[—this is how we went from Eq. (4.2.6)
on page 26 to Eq. (4.2.7) on page 26. Similarly, the left-hand side (LHS) of Eq. (4.2.1) on page 25 can be
obtained from the LHS of Eq. (4.2.15) under 𝑡𝐸 = 𝑖𝑡. Nevertheless, as one might notice from Eqs. (2.3.3)
and (4.2.11) on page 13 and on the preceding page, it turns out that 𝜏 = 𝑖[ and 𝑡𝐸 = 𝑖𝑡 are actually the same
analytic continuation. Hence, Eq. (4.2.15) implies Eq. (4.2.1) on page 25, concluding our proof.

4.3 Reading Recommendations

The path integral formulation of quantum mechanics and quantum field theory in flat spacetime is well-
discussed in the books by Peskin and Schroeder [42] and Zee [66]. For QFTCS, see the book by Mukhanov
and Winitzki [38] for an introductory discussion. The master’s thesis by the author [1] discusses the path
integral formulation at an intermediate level and critiques when it can be used. Although it focuses on
the Euclidean signature path integral, Lorentzian path integrals should always be understood as analytic
continuations of an Euclidean path integral. Our discussion of the Unruh effect follows the original paper by
Unruh and Weiss [57] and the review by Crispino, Higuchi, and Matsas [10].

g 0 G



Five

Particle Detectors

Another interesting approach for deriving the Unruh effect is to employ a particle detector. This allows us to
obtain a different point of view on the phenomenom.

5.1 What is a Particle Detector?

We shall consider an Unruh–DeWitt detector [12, 55]. This is a two-level detector that can be excited or
de-excited through interactions with the quantum field, similar to how an ammonia molecule can flip states
upon interaction with an external electric field [see 16, Chap. 9]. Intuitively, the detector will flip from
the ground state to the excited state when it absorbs a “particle”, and will decay when it emits a “particle”.
Pictorially, we are considering a “particle in a box” that can interact with the field. For example, we are
carrying around an electron in a box and use it to measure properties of the electromagnetic field. Further
details are given by Unruh and Wald [56] and Wald [61, Sec. 3.3]. Our discussion follows the review given by
Burbano, Perche, and Torres [8] and also draws from the seminal works by DeWitt [12] and Unruh [55].

We have already discussed at length how to describe a quantum field. For the detector, we shall consider a
two-level quantum system—i.e., a qubit— with free Hamiltonian

𝐻Ω =
Ω

2
𝜎𝑧 , (5.1.1)

where 𝜎𝑧 is the Pauli matrix and Ω is a constant with dimension of energy. It represents the energy gap
between the ground and excited states of the detector. Since we want the excited state to have an energy larger
than that of the ground state, we assume Ω > 0. Notice that 𝐻Ω generates translations with respect to the
detector’s proper time.

We shall also introduce an interaction between the quantum field and the detector. We write, in the
interaction picture,

𝐻int = 𝜖𝜎𝑥 (𝜏) ⊗ 𝜑(𝑧(𝜏)), (5.1.2)
where 𝜖 is a coupling constant, 𝜎𝑥 (𝜏) is the Pauli matrix (which evolves in the interaction picture), 𝜑 is the
quantum field, and 𝑧(𝜏) denotes the detector’s worldline. Hence, we are prescribing a pointlike interaction
between detector and field along the detector’s worldline. This interaction could be more complex to allow us
to turn the detector on and off, or to allow for the detector to have spatial degrees of freedom, but this simple
model is sufficient for our present purposes.

The quantum field also evolves with some Hamiltonian 𝐻𝜑 . This Hamiltonian evolves the field along
inertial time, and hence we need to introduce a correction factor to account for the evolution with respect to
the detector’s proper time. This is merely a factor of d𝑡

d𝜏 , since

𝑖
d
d𝜏

= 𝑖
d𝑡
d𝜏

d
d𝑡

=
d𝑡
d𝜏

𝐻𝜑 . (5.1.3)

At the end of the day, we have the Hamiltonian

𝐻 =
d𝑡
d𝜏

𝐻𝜑 + Ω

2
𝜎𝑧 + 𝜖𝜎𝑥 (𝜏) ⊗ 𝜑(𝑧(𝜏)). (5.1.4)
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30 5. Particle Detectors

5.2 Excitation Probability

Let us then compute the excitation probability for the detector. Consider the system’s initial state is
|𝑔, 0⟩ = |𝑔⟩ ⊗ |0⟩, where |𝑔⟩ denotes the detector’s ground state and |0⟩ denotes the vacuum. We are mainly
interested in the Minkowski vacuum, but most of our calculation also works for other states and spacetimes.
We want to compute the probability that the system undergoes a transition to some state |𝑒, 𝜑⟩ = |𝑒⟩ ⊗ |𝜑⟩,
where |𝑒⟩ is the detector’s excited state and |𝜑⟩ is an arbitrary field state. Hence, we are first trying to compute
the amplitude

𝐴𝑔→𝑒 (𝜑) = ⟨𝑒, 𝜑|𝑈int |𝑔, 0⟩ , (5.2.1)

where 𝑈int is the time-evolution operator in the interaction picture.
To compute this expression, we begin by writing the time-evolution operator as a Dyson series [63, Eq.

(8.7.13)]

𝑈int (𝜏′, 𝜏) = T exp
(
−𝑖

∫ 𝜏′

𝜏

𝐻int (𝜏1) d𝜏1

)
, (5.2.2a)

= 1 +
+∞∑︁
𝑛=1

(−𝑖)𝑛
𝑛!

∫ 𝜏′

𝜏

· · ·
∫ 𝜏′

𝜏

T (𝐻int (𝜏1) · · ·𝐻int (𝜏𝑛)) d𝜏1 · · · d𝜏𝑛 , (5.2.2b)

where T is the time-ordering operator.
Using Eq. (5.1.2) on the previous page on the Dyson series, we find that

𝑈int (𝜏′, 𝜏) = 1+
+∞∑︁
𝑛=1

(−𝑖𝜖)𝑛
𝑛!

∫ 𝜏′

𝜏

· · ·
∫ 𝜏′

𝜏

T [(𝜎𝑥 (𝜏1) · · ·𝜎𝑥 (𝜏𝑛)) ⊗ (𝜑(𝜏1) · · · 𝜑(𝜏𝑛))] d𝜏1 · · · d𝜏𝑛 , (5.2.3)

where we have now adopted the simplified notation 𝜑(𝜏) ≡ 𝜑(𝑧(𝜏)).
Let us then consider the amplitude we are interested in. When computing ⟨𝑒, 𝜑|𝑈int |𝑔, 0⟩, we can

immediately see the identity drops out, since the two states are orthogonal. Hence, we are left with

𝐴𝑔→𝑒 (𝜑; 𝜏, 𝜏′)

=

+∞∑︁
𝑛=1

(−𝑖𝜖)𝑛
𝑛!

∫ 𝜏′

𝜏

· · ·
∫ 𝜏′

𝜏

⟨𝑒, 𝜑|T [(𝜎𝑥 (𝜏1) · · ·𝜎𝑥 (𝜏𝑛)) ⊗ (𝜑(𝜏1) · · · 𝜑(𝜏𝑛))] |𝑔, 0⟩ d𝜏1 · · · d𝜏𝑛 . (5.2.4)

Notice that

⟨𝑒, 𝜑|T [(𝜎𝑥 (𝜏1) · · ·𝜎𝑥 (𝜏𝑛)) ⊗ (𝜑(𝜏1) · · · 𝜑(𝜏𝑛))] |𝑔, 0⟩
= ⟨𝑒 |T (𝜎𝑥 (𝜏1) · · ·𝜎𝑥 (𝜏𝑛)) |𝑔⟩ ⟨𝜑 |T (𝜑(𝜏1) · · · 𝜑(𝜏𝑛)) |0⟩ . (5.2.5)

At this stage, we cannot simplify the 𝑛-point function, but we can proceed with our calculation for the detector
factor.

Let us begin by noticing that we can write 𝜎𝑥 in terms of ladder operators as

𝜎𝑥 = 𝜎+ + 𝜎− , (5.2.6)

where
𝜎± =

𝜎𝑥 ± 𝑖𝜎𝑦

2
. (5.2.7)

The advantage of noticing this is that

𝜎+ |𝑔⟩ = |𝑒⟩ , 𝜎+ |𝑒⟩ = 0, 𝜎− |𝑔⟩ = 0, and 𝜎− |𝑒⟩ = |𝑔⟩ , (5.2.8)
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which imply
𝜎𝑥 |𝑔⟩ = |𝑒⟩ and 𝜎𝑥 |𝑒⟩ = |𝑔⟩ . (5.2.9)

We then consider the slightly more complicated case where the Pauli matrix is being evolved in time,
since we are working in the interaction picture. We then have

𝜎𝑥 (𝜏) |𝑔⟩ = exp (𝑖𝜏𝐻Ω)𝜎𝑥 exp (−𝑖𝜏𝐻Ω) |𝑔⟩ , (5.2.10a)

= exp (𝑖𝜏𝐻Ω)𝜎𝑥 exp
(
+𝑖𝜏Ω

2

)
|𝑔⟩ , (5.2.10b)

= exp
(
+𝑖𝜏Ω

2

)
exp (𝑖𝜏𝐻Ω)𝜎𝑥 |𝑔⟩ , (5.2.10c)

= exp
(
+𝑖𝜏Ω

2

)
exp (𝑖𝜏𝐻Ω) |𝑒⟩ , (5.2.10d)

= exp
(
+𝑖𝜏Ω

2

)
exp

(
+𝑖𝜏Ω

2

)
|𝑒⟩ , (5.2.10e)

= exp (+𝑖𝜏Ω) |𝑒⟩ . (5.2.10f)

An analogous calculation leads to
𝜎𝑥 (𝜏) |𝑒⟩ = exp (−𝑖𝜏Ω) |𝑔⟩ . (5.2.11)

Therefore, we find that

⟨𝑒 |𝜎𝑥 (𝜏1) · · ·𝜎𝑥 (𝜏𝑛) |𝑔⟩ =
{
𝑒𝑖Ω(𝜏1−𝜏2+𝜏3−···+𝜏𝑛 ) , if 𝑛 is odd,
0, if 𝑛 is even.

(5.2.12)

In the time-ordered case, we get a similar result, but we must order the terms in the exponential correctly.
Hence, we shall simply denote

⟨𝑒 |T (𝜎𝑥 (𝜏1) · · ·𝜎𝑥 (𝜏2𝑛+1)) |𝑔⟩ = T 𝑒𝑖Ω(𝜏1−𝜏2+𝜏3−···+𝜏2𝑛+1 ) , (5.2.13)

and the expression vanishes if there is an even number of insertions.
Bringing all of this back to the Dyson series, we find that

𝐴𝑔→𝑒 (𝜑; 𝜏, 𝜏′) =
∑︁
𝑛 odd

(−𝑖𝜖)𝑛
𝑛!

∫ 𝜏′

𝜏

· · ·
∫ 𝜏′

𝜏

⟨𝜑 |T (𝜑(𝜏1) · · · 𝜑(𝜏𝑛)) |0⟩ T 𝑒𝑖Ω(𝜏1−···+𝜏𝑛 ) d𝜏1 · · · d𝜏𝑛 .

(5.2.14)
The probability for the transition happening between the instants 𝜏 and 𝜏′ is then

𝑝𝑔→𝑒 (𝜏, 𝜏′) =
∫ ��𝐴𝑔→𝑒 (𝜑; 𝜏, 𝜏′)

��2 D𝜑 , (5.2.15)

where we are integrating the field’s state out, since we are looking only at the detector. Using the resolution of
the identity written as

∫
|𝜑⟩⟨𝜑 | D𝜑 = 1, we find that

𝑝𝑔→𝑒 (𝜏, 𝜏′) =
∑︁

𝑛,𝑚 odd
𝜖𝑛+𝑚

(−𝑖)𝑛−𝑚
𝑛!𝑚!

∫ 𝜏′

𝜏

· · ·
∫ 𝜏′

𝜏

〈
0
���T (

𝜑(𝜏′1) · · · 𝜑(𝜏
′
𝑚)

)†T (𝜑(𝜏1) · · · 𝜑(𝜏𝑛))
���0〉 ×

× T 𝑒𝑖Ω(𝜏1−···+𝜏𝑛 )T 𝑒−𝑖Ω(𝜏′1−···+𝜏
′
𝑚 ) d𝜏1 · · · d𝜏𝑛 d𝜏′1 · · · d𝜏

′
𝑚 . (5.2.16)

Up to leading order, we have

𝑝𝑔→𝑒 (𝜏, 𝜏′) = 𝜖2
∫ 𝜏′

𝜏

∫ 𝜏′

𝜏

〈
0
��𝜑(𝜏′1)𝜑(𝜏1)

��0〉 𝑒−𝑖Ω(𝜏′1−𝜏1 ) d𝜏1 d𝜏′1 . (5.2.17)

Notice this expression means the probability of excitation is given by a Fourier transform of the two-point
function.
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5.3 The Unruh Effect

So far, we did not need to specify the details of the state |0⟩, the worldline of the detector, and not even the
spacetime we are working in. This exhibits how useful particle detectors can be in a myriad of situations. Our
case of interest concerns the Minkowski vacuum in Minkowski spacetime. For an inertial detector, the proper
time 𝜏 would coincide with inertial time. In this case, we know the two-point function only has contributions
due to positive frequencies (this follows from Eq. (2.3.6) on page 14), and hence the probability will vanish for
Ω > 0, which is our case of interest. Hence, an inertial detector will not detect any particles in the Minkowski
vacuum, as expected. Nevertheless, notice that accelerated detectors have different frequency decompositions
and, as a consequence, may lead to non-vanishing excitation probabilities.

Let us then specify the detector’s worldline. This can be done naturally in Rindler coordinates, with which
we specify the worldline as

𝑧` (𝜏) =
(
𝜏;

1
𝑎
, 0, 0

)
. (5.3.1)

We took 𝑟 = 1
𝑎

because this corresponds to the worldline of the observer with proper acceleration 𝑎 defining
Rindler coordinates [44, 45, Sec. 12.4]. We also took the coordinates 𝑦(𝜏) = 𝑧(𝜏) = 0 for simplicity, but they
could have been given any other constant value without altering the following results.

Using Eqs. (2.3.3), (2.3.5) and (5.3.1) on page 13 and on this page, we find that〈
0𝑀

��𝜑(𝜏′1)𝜑(𝜏1)
��0𝑀

〉
= w-lim

Y→0+
𝑎2

4𝜋2
[
(cosh

(
𝑎𝜏′1

)
− cosh(𝑎(𝜏1 − 𝑖Y)))2 − (sinh

(
𝑎𝜏′1

)
− sinh(𝑎(𝜏1 − 𝑖Y)))2

] ,
(5.3.2)

where we chose to align the arbitrary future-directed timelike vector 𝑇𝑎 of Eq. (2.3.5) on page 13 along the(
𝜕
𝜕[

)𝑎
direction, for this simplifies the expression. The previous equation can then be further simplified using

the properties of hyperbolic functions to get to〈
0𝑀

��𝜑(𝜏′1)𝜑(𝜏1)
��0𝑀

〉
= w-lim

Y→0+
−𝑎2

16𝜋2 sinh2
(

1
2𝑎

(
𝜏′1 − 𝜏1 − 𝑖Y

) ) . (5.3.3)

We can then notice that the probability of excitation is

𝑝𝑔→𝑒 (𝜏, 𝜏′) = − 𝑎2𝜖2

16𝜋2 lim
Y→0+

∫ 𝜏′

𝜏

∫ 𝜏′

𝜏

exp
(
−𝑖Ω(𝜏′1 − 𝜏1)

)
sinh2 ( 𝑎

2
(
𝜏′1 − 𝜏1 − 𝑖Y

) ) d𝜏′1 d𝜏1 , (5.3.4a)

= − 𝑎𝜖2

8𝜋2 lim
Y→0+

∫ 𝜏′

𝜏

∫ 𝑎 (𝜏′−𝜏1 )/2

𝑎 (𝜏−𝜏1 )/2

exp
(
− 2𝑖Ω[

𝑎

)
sinh2 ([ − 𝑖Y)

d[ d𝜏1 , (5.3.4b)

where we defined [ =
𝑎 (𝜏′1−𝜏1 )

2 .
Let us then define the rate of excitation through

𝑅𝑔→𝑒 = lim
𝜏′→+∞
𝜏→−∞

𝑝𝑔→𝑒 (𝜏, 𝜏′)
𝜏′ − 𝜏

, (5.3.5a)

= − 𝑎𝜖2

8𝜋2 lim
Y→0+

∫ +∞

−∞

exp
(
− 2𝑖Ω[

𝑎

)
sinh2 ([ − 𝑖Y)

d[ . (5.3.5b)

This Fourier transform can be computed using the residue theorem. One finds

𝑅𝑔→𝑒 =
𝜖2Ω

2𝜋
(
𝑒

2𝜋Ω
𝑎 − 1

) . (5.3.6)
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If we did the same calculations for the |𝑒, 𝜑⟩ → |𝑔, 0𝑀⟩ transition, we would get

𝑅𝑒→𝑔 =
𝜖2Ω

2𝜋
(
1 − 𝑒−

2𝜋Ω
𝑎

) , (5.3.7)

which is the same result with Ω → −Ω. Notice then that this implies

𝑅𝑔→𝑒

𝑅𝑒→𝑔

= 𝑒−
2𝜋Ω
𝑎 , (5.3.8)

meaning the detector satisfies the detailed balance [see 54] at inverse temperature 𝛽 = 2𝜋
𝑎

. This is a hallmark
of a system in thermal equilibrium.

Given how abstract our previous approaches can be, it is interesting to notice how “experimental” this
derivation is. While we used a simplified model for a particle detector, many physical systems can be
understood as detectors. For example, a thermometer. One can even take it further and understand a steak as a
particle detector, in which case the Unruh effect will present itself as a cooking method. Since the Maillard
reaction happens at temperatures above 425 K and one needs an acceleration of about 1022 m s−2 to reach this
Unruh temperature, it might be desirable to sear your steak before cooking it with the Unruh effect.

5.4 Reading Recommendations

The first notions about the Unruh–DeWitt particle detector were laid out by Unruh [55] and by DeWitt [12],
with most of our discussion being adapted from the paper by DeWitt [12]. An useful reference to understand
how particle detectors work is the paper by Unruh and Wald [56].

g 0 G





A

Notation and Conventions

We follow the notation and conventions used by Wald [59], which corresponds to + + + in the Misner, Thorne,
and Wheeler [37] classification and employs abstract index notation.

While we often use units with ℏ = 𝑐 = 𝐺 = 𝑘𝐵 = 1, we sometimes write these constants explicitly for
clarity.

g 0 G
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